### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_vit_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names with open("categories.txt", "r") as f: class_names = [food_name.strip() for food_name in f.readlines()] ### 2. Model and transforms preparation ### # Create model vit, vit_transforms = create_vit_model( num_classes=len(class_names), ) # Load saved weights vit.load_state_dict( torch.load( f="pretrain_vit.pth", map_location=torch.device('cpu') ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = vit_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode vit.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(vit(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)"), ], ) # Launch the app! demo.launch()