Spaces:
Sleeping
Sleeping
File size: 16,841 Bytes
b5bf8cc 463dc98 b5bf8cc c7bbd93 27cb4cc b5bf8cc 876dea7 b5bf8cc f2e6593 c7bbd93 50e0a7b 6f6e9e2 c7bbd93 ef15a8e 43b799a 50e0a7b c7bbd93 50e0a7b 2ab37ad c7bbd93 50e0a7b d304816 c7bbd93 7870c8d 50e0a7b 7870c8d 50e0a7b f2e6593 50e0a7b 0b3264d f2e6593 3174076 f2e6593 7870c8d 50e0a7b 3174076 f2e6593 3174076 f2e6593 50e0a7b 2ab37ad f2e6593 65452a1 70af404 f2e6593 65452a1 50e0a7b 70af404 50e0a7b 473dbf5 50e0a7b 1c7b30c 50e0a7b c7bbd93 3174076 c7bbd93 b5bf8cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import nltk
import zipfile
import os
from bs4 import BeautifulSoup
import re
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
from transformers import BartForConditionalGeneration, BartTokenizer
import torch
from tqdm import tqdm
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, Record, Filter
from random import uniform
import PyPDF2
import streamlit as st
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
def setup_nltk_resources():
"""
Sets up the custom NLTK data path and downloads necessary resources.
Downloads 'wordnet' for lemmatization, 'stopwords' for stopwords removal,
and 'punkt' for sentence tokenization.
"""
nltk_data_path = "/kaggle/working/nltk_data"
nltk.data.path.append(nltk_data_path)
nltk.download('wordnet', download_dir=nltk_data_path)
nltk.download('stopwords', download_dir=nltk_data_path)
nltk.download('punkt', download_dir=nltk_data_path)
def unzip_nltk_resource(zip_path, extract_to):
"""
Unzips an NLTK resource file to a specified directory.
Args:
zip_path (str): The path to the zipped NLTK resource file.
extract_to (str): The directory where the contents of the zip file will be extracted.
"""
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
def preprocess_text(text):
"""
Preprocesses a given text string for NLP tasks. This includes cleaning the text,
tokenizing, removing stopwords, and lemmatizing the words.
Args:
text (str): The text string to preprocess.
Returns:
str: The preprocessed text.
"""
if not text:
return ""
text = re.sub(r'[\r\n\t]+', ' ', text)
text = re.sub(r'[^a-zA-Z\s]', '', text)
text = text.lower()
tokens = word_tokenize(text)
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word not in stop_words]
lemmatizer = WordNetLemmatizer()
lemmatized_text = [lemmatizer.lemmatize(word) for word in filtered_tokens]
return ' '.join(lemmatized_text)
def drop_duplicates(df, column_name):
"""
Drops duplicates based on a specified column from the DataFrame.
Args:
df (pd.DataFrame): The DataFrame from which to remove duplicates.
column_name (str): The name of the column based on which duplicates will be identified.
Returns:
pd.DataFrame: DataFrame with duplicates removed based on the specified column.
"""
if column_name not in df.columns:
raise ValueError(f"Column '{column_name}' not found in DataFrame")
original_size = df.shape[0]
df_cleaned = df.drop_duplicates(subset=[column_name])
new_size = df_cleaned.shape[0]
print(f"Dropped {original_size - new_size} duplicates from '{column_name}'. New dataset size: {new_size}")
return df_cleaned
def add_token_count_column(df, column_name):
"""
Adds a new column to the DataFrame with the token count for each entry in the specified column.
This function creates a copy of the DataFrame to avoid 'SettingWithCopyWarning'.
Args:
df (pd.DataFrame): The DataFrame to process.
column_name (str): The name of the column for which to count tokens.
Returns:
pd.DataFrame: DataFrame with an additional column 'token_count'.
"""
if column_name not in df.columns:
raise ValueError(f"Column '{column_name}' not found in DataFrame")
# Creating a copy of the DataFrame to avoid modifying a slice
df_copy = df.copy()
# Tokenize each entry in the specified column and count the number of tokens
df_copy['token_count'] = df_copy[column_name].apply(lambda x: len(word_tokenize(x)) if pd.notnull(x) else 0)
return df_copy
class TextSummarizer:
"""
A text summarization class that uses a fine-tuned BART model to summarize text.
Attributes:
device (str): Device to run the model on, either 'cuda' or 'cpu'.
model (BartForConditionalGeneration): The loaded BART model.
tokenizer (BartTokenizer): The tokenizer for the BART model.
"""
def __init__(self, model_name):
"""
Initializes the TextSummarizer with a specified BART model.
Args:
model_name (str): The name or path of the fine-tuned BART model.
"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = BartForConditionalGeneration.from_pretrained(model_name).to(self.device)
self.tokenizer = BartTokenizer.from_pretrained(model_name)
def summarize(self, text, max_input_length=1024, max_output_length=150, min_output_length=40):
"""
Summarizes the given text using the fine-tuned BART model.
Args:
text (str): The text to be summarized.
max_input_length (int): The maximum length of the input text in tokens.
max_output_length (int): The maximum length of the summary text in tokens.
min_output_length (int): The minimum length of the summary text in tokens.
Returns:
str: The summarized text.
"""
inputs = self.tokenizer([text], max_length=max_input_length, return_tensors='pt', truncation=True)
summary_ids = self.model.generate(
inputs['input_ids'].to(self.device),
max_length=max_output_length,
min_length=min_output_length,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
return self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def batch_summarize(df, text_col, summarizer, batch_size=10, output_col=None):
"""
Summarizes text in batches.
Args:
df (pd.DataFrame): The DataFrame containing text to summarize.
text_col (str): The column in the DataFrame with text to summarize.
summarizer: The summarizer object or function.
batch_size (int): The size of each batch for summarization.
output_col (str, optional): The name of the output column for summarized text.
If None, defaults to text_col.
Returns:
pd.DataFrame: DataFrame with summarized text in the specified output column.
"""
summarized_texts = []
# Use the text_col as output_col if not specified
if output_col is None:
output_col = text_col
# Iterate through the DataFrame in batches
for start_idx in tqdm(range(0, len(df), batch_size), desc="Summarizing"):
end_idx = start_idx + batch_size
batch = df[text_col][start_idx:end_idx]
# Summarize each batch
summarized_batch = [summarizer.summarize(text) for text in batch]
summarized_texts.extend(summarized_batch)
# Create a new DataFrame with the summarized text
return pd.DataFrame({output_col: summarized_texts})
class SentenceTransformerEncoder:
"""
A class to handle sentence encoding using Sentence Transformers, directly working with pandas DataFrames.
This class encodes text data in a specified DataFrame column into vector representations.
Attributes:
model (SentenceTransformer): The Sentence Transformer model used for encoding.
"""
def __init__(self, model_name='all-MiniLM-L6-v2'):
"""
Initializes the SentenceTransformerEncoder with a specified Sentence Transformer model.
Args:
model_name (str): The name of the Sentence Transformer model.
"""
self.model = SentenceTransformer(model_name)
def encode_column(self, df, column, batch_size=32, encoded_column_suffix='_encoded'):
"""
Encodes a specific column in a DataFrame and adds a new column with encoded vectors.
Args:
df (pd.DataFrame): The DataFrame containing the texts to encode.
column (str): The name of the column to encode.
batch_size (int): The size of each batch for processing.
encoded_column_suffix (str): Suffix for the new column containing encoded vectors.
Returns:
pd.DataFrame: The original DataFrame with an additional column containing encoded vectors.
Raises:
ValueError: If the specified column is not found in the DataFrame.
"""
if column not in df.columns:
raise ValueError(f"Column '{column}' not found in DataFrame")
# Encoding the text data in batches
encoded_vectors = []
for start_idx in range(0, len(df), batch_size):
end_idx = min(start_idx + batch_size, len(df))
batch_texts = df[column][start_idx:end_idx].tolist()
batch_encoded = self.model.encode(batch_texts, show_progress_bar=True)
encoded_vectors.extend(batch_encoded)
# Adding the encoded vectors as a new column in the DataFrame
df[column + encoded_column_suffix] = encoded_vectors
return df
class QdrantInterface:
"""
A class for interfacing with the Qdrant vector database.
Attributes:
client (QdrantClient): Client instance for interacting with Qdrant.
vector_dimension (int): Dimension of the vectors used in the collection.
"""
"""
A class for interfacing with the Qdrant vector database.
...
"""
def __init__(self, url, api_key, vector_dimension):
"""
Initializes the QdrantInterface with the specified Qdrant URL, API key, and vector dimension.
Args:
url (str): Full URL of the Qdrant server.
api_key (str): API key for Qdrant.
vector_dimension (int): Dimension of vectors to be stored in Qdrant.
"""
self.client = QdrantClient(url=url, api_key=api_key)
self.vector_dimension = vector_dimension
def create_collection(self, collection_name, distance_metric=Distance.COSINE):
"""
Creates or recreates a collection in Qdrant.
Args:
collection_name (str): Name of the collection.
distance_metric (Distance): Distance metric for vector comparisons.
"""
self.client.recreate_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=self.vector_dimension, distance=distance_metric)
)
def save_to_qdrant(self, df, collection_name, vector_col, payload_cols, batch_size=100):
"""
Saves a DataFrame to Qdrant in batches.
Args:
df (pd.DataFrame): DataFrame containing data to save.
collection_name (str): Name of the collection in Qdrant.
vector_col (str): Name of the column containing vectors.
payload_cols (list[str]): List of column names to include as payload.
batch_size (int): Number of records to process in each batch.
"""
for start_idx in range(0, len(df), batch_size):
end_idx = min(start_idx + batch_size, len(df))
batch = df.iloc[start_idx:end_idx]
records = []
for idx, row in batch.iterrows():
# Debug print
print(f"Index: {idx}, Vector Type: {type(row[vector_col])}, First 10 Elements: {row[vector_col][:10]}")
record = Record(
id=idx,
vector=row[vector_col],
payload={col: row[col] for col in payload_cols}
)
records.append(record)
self.client.upload_records(collection_name=collection_name, records=records)
def retrieve_specific_records(self, collection_name, ids):
"""
Retrieves specific records by their IDs from a Qdrant collection.
Args:
collection_name (str): The name of the collection.
ids (list): List of record IDs to retrieve.
Returns:
List of specific records from the collection.
"""
return self.client.retrieve(collection_name=collection_name, ids=ids)
def view_sample_records(self, collection_name, vector_dimension, limit=10):
"""
Retrieves a sample of records from a Qdrant collection using a dummy search.
Args:
collection_name (str): The name of the collection.
vector_dimension (int): Dimension of vectors in the collection.
limit (int): The number of records to retrieve.
Returns:
List of sample records from the collection.
"""
# Generate a random vector
random_vector = [uniform(-1, 1) for _ in range(vector_dimension)]
# Perform a dummy search
return self.client.search(
collection_name=collection_name,
query_vector=random_vector,
limit=limit
)
def match_resumes_to_jobs(self, resume_vector, top_k=10):
"""
Matches a given resume vector to job postings.
Args:
resume_vector (list): The vector representation of a resume.
top_k (int): Number of top similar matches to return.
Returns:
List of matched job postings with similarity scores.
"""
hits = self.client.search(
collection_name="jobs",
query_vector=resume_vector,
limit=top_k,
with_payload=True
)
return [(hit.payload, hit.score) for hit in hits]
def match_jobs_to_resumes(self, job_vector, top_k=10):
"""
Matches a given job vector to resumes.
Args:
job_vector (list): The vector representation of a job posting.
top_k (int): Number of top similar matches to return.
Returns:
List of tuples containing matched resumes and their similarity scores.
"""
hits = self.client.search(
collection_name="resumes",
query_vector=job_vector,
limit=top_k,
with_payload=True
)
return [(hit.payload, hit.score) for hit in hits]
def extract_text_from_pdf(file):
"""
Extract text from a PDF file using PyPDF2 library.
"""
text = ""
try:
pdf_reader = PyPDF2.PdfReader(file)
num_pages = len(pdf_reader.pages)
for page_num in range(num_pages):
page = pdf_reader.pages[page_num]
text += page.extract_text()
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return text
def resume_pdf():
st.title("UPLOAD RESUMES")
# Allow user to upload multiple PDF files
uploaded_files = st.file_uploader("Upload PDF files", accept_multiple_files=True, type="pdf")
if uploaded_files:
st.write("## Extracted Text from PDFs")
df_rows = []
# Iterate over uploaded PDF files
for idx, uploaded_file in enumerate(uploaded_files):
text = extract_text_from_pdf(uploaded_file)
# Add text to DataFrame
df_rows.append({"File Name": f"File_{idx+1}", "Resume": text})
# # Display extracted text
# st.write(f"### File {idx+1}")
# st.write(text)
# # Iterate over uploaded PDF files
# for uploaded_file in uploaded_files:
# text = extract_text_from_pdf(uploaded_file)
# # Add text to DataFrame
# df_rows.append({"File Name": uploaded_file.name, "Text": text.decode("utf-8")})
# # Display extracted text
# st.write(f"### {uploaded_file.name}")
# st.write(text)
# Create DataFrame
df = pd.DataFrame(df_rows)
return df
# # Display DataFrame
# st.write("## Combined Data in DataFrame")
# st.write(df)
def job_desc_pdf():
st.title("UPLOAD JOB DESCRIPTION")
uploaded_file = st.file_uploader("Upload PDF file", type="pdf")
if uploaded_file:
st.write("## Extracted Text from PDFs")
text = extract_text_from_pdf(uploaded_file)
df_rows = []
df_rows.append({"File Name": "Job_Desc", "description": text})
# # Iterate over uploaded PDF files
# for uploaded_file in uploaded_files:
# text = extract_text_from_pdf(uploaded_file)
# # Add text to DataFrame
#
# # Display extracted text
# st.write(f"### {uploaded_file.name}")
# st.write(text)
# Create DataFrame
df = pd.DataFrame(df_rows)
# # Display DataFrame
# st.write("## Combined Data in DataFrame")
# st.write(df)
return df
|