File size: 7,715 Bytes
513d672 449695a 513d672 449695a 513d672 449695a 513d672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# import gradio as gr
import numpy as np
import pandas as pd
import praw
from huggingface_hub import HfApi, HfFolder
import time
import os
from datetime import datetime
# from tqdm import tqdm
HfFolder.save_token(os.getenv("HF_TOKEN"))
try:
# def initialize_reddit():
reddit = praw.Reddit(client_id= os.getenv("PRAW_CLIENT_ID"),
client_secret= os.getenv("PRAW_CLIENT_SECRET"),
user_agent= os.getenv("RPAW_AGENT"),
check_for_async=False
)
except praw.exceptions.PRAWException as e:
print(f"PRAW Exception: {str(e)}")
# return None
except Exception as e:
print(f"An error occurred: {str(e)}")
# return None
def scrape_reddit(subreddit_name = None, keywords = None, limit = 1000):
posts_data = []
if subreddit_name:
subreddit = reddit.subreddit(subreddit_name)
if keywords:
posts = subreddit.search(keywords, limit=limit)
else:
posts = subreddit.hot(limit=limit)
else:
posts = reddit.subreddit("all").search(keywords, limit=limit)
# print(posts)
for post in posts:
# print(post.title)
try:
post_data = {
"title": post.title,
"score": post.score,
"id": post.id,
"url": post.url,
"num_comments": post.num_comments,
"created": datetime.fromtimestamp(post.created),
"body": post.selftext,
"subreddit": post.subreddit.display_name
}
posts_data.append(post_data)
# Add a small delay to avoid hitting rate limits
time.sleep(0.1)
except praw.exceptions.PRAWException as e:
print(f"Error processing post {post.id}: {str(e)}")
continue
df = pd.DataFrame(posts_data)
df['content'] = df['title'] + '\n' + df['body']
return df
def get_comments(reddit, post_id, limit=100):
"""
Get top comments from a specific post.
Args:
reddit: Reddit instance
post_id (str): ID of the post to get comments from
limit (int): Maximum number of comments to retrieve (default 100)
Returns:
pd.DataFrame: DataFrame containing top comments data
"""
try:
submission = reddit.submission(id=post_id)
comments_data = []
# Replace MoreComments objects with actual comments, limited to save time
submission.comments.replace_more(limit=0) # Ignore "More Comments" expansions
# Get all top-level comments
all_comments = submission.comments.list()
# Sort comments by score and take top ones
sorted_comments = sorted(all_comments, key=lambda x: x.score, reverse=True)[:limit]
for comment in sorted_comments:
try:
comment_data = {
'comment_id': comment.id,
'post_id': post_id,
'post_title': submission.title,
# 'author': str(comment.author) if comment.author else '[deleted]',
'body': comment.body,
'score': comment.score,
'created_utc': datetime.fromtimestamp(comment.created_utc)
# 'parent_id': comment.parent_id,
# 'is_submitter': comment.is_submitter
}
comments_data.append(comment_data)
except Exception as e:
print(f"Error processing comment {comment.id}: {str(e)}")
continue
print(comments_data)
# Create DataFrame
df = pd.DataFrame(comments_data)
# Sort by score (highest first)
if not df.empty:
print("sort comments by score")
df = df.sort_values('score', ascending=False)
return df
except praw.exceptions.PRAWException as e:
print(f"PRAW Exception while getting comments: {str(e)}")
return pd.DataFrame()
except Exception as e:
print(f"Error getting comments: {str(e)}")
return pd.DataFrame()
def get_comments_and_upload(df, dataset_repo_id):
# Initialize the Hugging Face API
api = HfApi()
existing_files = api.list_repo_files(repo_id=dataset_repo_id, repo_type="dataset")
# Iterate over each submission in the DataFrame
for index, row in df.iterrows():
csv_file_path = f"comments_{row['id']}.csv"
repo_csv_path = f"comments/{csv_file_path}"
# Check if this file already exists in the Hugging Face dataset
# if repo_csv_path in existing_files:
# print(f"{csv_file_path} already exists in the dataset. Skipping upload.")
# continue
# Fetch comments for the current submission
comments_df = get_comments(reddit, row['id'])
if len(comments_df) == 0:
print(f"No comments found for {row['id']}")
# continue
# Define a unique CSV filename for each submission based on its ID
csv_file_path = f"comments_{row['id']}.csv"
# Save the comments DataFrame as a CSV file
comments_df.to_csv(csv_file_path, index=False)
# Upload the CSV file to the Hugging Face dataset repository
api.upload_file(
path_or_fileobj=csv_file_path,
path_in_repo=f"comments/{csv_file_path}", # Save in a 'comments' folder in the dataset repo
repo_id=dataset_repo_id,
repo_type="dataset"
)
print(f"Uploaded {csv_file_path} to Hugging Face.")
# Optionally, delete the local CSV file to save space
os.remove(csv_file_path)
print("All comments CSV files uploaded successfully!")
def main():
# Example usage
try:
# Search for 2016 election posts
df = scrape_reddit(keywords="election")
if df is not None and not df.empty:
print(f"Successfully scraped {len(df)} posts")
# Save to CSV
# df.to_csv("reddit_2016_election_posts.csv", index=False)
df['created'] = pd.to_datetime(df['created'], unit='s')
df = df.sort_values(by='created', ascending=True)
df_24 = df[df['created'] > '2024-01-01'].reset_index(drop=True)
# df_16 = df_16[df_16['created'] > '2015-12-31'].reset_index(drop=True)
dataset_repo_id = "Vera-ZWY/reddite2024elections_submissions"
# reate database if it's not exsit
api = HfApi()
try:
api.dataset_info(dataset_repo_id)
# dataset_exists = True
print(f"Dataset {dataset_repo_id} already exists.")
except Exception:
# dataset_exists = False
print(f"Dataset {dataset_repo_id} will be created.")
# If the dataset doesn't exist, create it and then upload the CSV file
# api.create_repo(repo_id=dataset_repo_id, repo_type="dataset")
today_date = datetime.now().strftime('%Y%m%d')
filename = f"df_24_{today_date}.csv"
df_24.to_csv(filename, index=False)
# csv_file_path = filename
api.upload_file(
path_or_fileobj= filename,
path_in_repo=f"submissions/{filename}",
repo_id=dataset_repo_id,
repo_type="dataset"
)
get_comments_and_upload(df_24, dataset_repo_id)
else:
print("No data was retrieved")
except Exception as e:
print(f"Error in main: {str(e)}")
if __name__ == '__main__':
main()
|