Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import pandas as pd
|
|
7 |
from io import StringIO, BytesIO
|
8 |
import base64
|
9 |
import json
|
10 |
-
import plotly.io as pio
|
11 |
# from linePlot import plot_stacked_time_series, plot_emotion_topic_grid
|
12 |
|
13 |
# Define your Hugging Face token (make sure to set it as an environment variable)
|
@@ -36,24 +36,42 @@ def stream_chat_with_rag(
|
|
36 |
# Debugging: Print the raw response
|
37 |
print("Raw answer from API:")
|
38 |
print(answer)
|
39 |
-
print("top works from API:")
|
40 |
-
print(fig)
|
41 |
|
42 |
-
fig_dict = json.loads(plotly_data['plot'])
|
43 |
|
44 |
-
# Render the figure
|
45 |
-
fig = pio.from_json(json.dumps(fig_dict))
|
46 |
-
fig.show()
|
47 |
return answer, fig
|
48 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
def chat_function(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
chatbot_state = gr.State([])
|
59 |
|
@@ -186,26 +204,26 @@ with gr.Blocks(title="Reddit Election Analysis") as demo:
|
|
186 |
gr.Markdown("Ask questions about election-related comments and posts")
|
187 |
|
188 |
with gr.Row():
|
189 |
-
with gr.Column():
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
|
201 |
-
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
# with gr.Column():
|
210 |
# output_text = gr.Textbox(
|
211 |
# label="Response",
|
@@ -213,7 +231,15 @@ with gr.Blocks(title="Reddit Election Analysis") as demo:
|
|
213 |
# )
|
214 |
|
215 |
with gr.Column():
|
216 |
-
chatbot = gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
gr.Markdown("## Top works of the relevant Q&A")
|
219 |
# with gr.Row():
|
@@ -254,12 +280,12 @@ with gr.Blocks(title="Reddit Election Analysis") as demo:
|
|
254 |
outputs = [time_series_fig, linePlot_status_text]
|
255 |
)
|
256 |
|
257 |
-
# Update both outputs when submit is clicked
|
258 |
-
submit_btn.click(
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
)
|
263 |
|
264 |
|
265 |
if __name__ == "__main__":
|
|
|
7 |
from io import StringIO, BytesIO
|
8 |
import base64
|
9 |
import json
|
10 |
+
# import plotly.io as pio
|
11 |
# from linePlot import plot_stacked_time_series, plot_emotion_topic_grid
|
12 |
|
13 |
# Define your Hugging Face token (make sure to set it as an environment variable)
|
|
|
36 |
# Debugging: Print the raw response
|
37 |
print("Raw answer from API:")
|
38 |
print(answer)
|
39 |
+
# print("top works from API:")
|
40 |
+
# print(fig)
|
41 |
|
42 |
+
# fig_dict = json.loads(plotly_data['plot'])
|
43 |
|
44 |
+
# # Render the figure
|
45 |
+
# fig = pio.from_json(json.dumps(fig_dict))
|
46 |
+
# fig.show()
|
47 |
return answer, fig
|
48 |
|
49 |
|
50 |
+
def predict(message, history):
|
51 |
+
history_langchain_format = []
|
52 |
+
for msg in history:
|
53 |
+
if msg['role'] == "user":
|
54 |
+
history_langchain_format.append(HumanMessage(content=msg['content']))
|
55 |
+
elif msg['role'] == "assistant":
|
56 |
+
history_langchain_format.append(AIMessage(content=msg['content']))
|
57 |
+
history_langchain_format.append(HumanMessage(content=message))
|
58 |
+
gpt_response = llm(history_langchain_format)
|
59 |
+
return gpt_response.content
|
60 |
|
61 |
+
def chat_function(message, history, year):
|
62 |
+
history_langchain_format = []
|
63 |
+
for msg in history:
|
64 |
+
if msg['role'] == "user":
|
65 |
+
history_langchain_format.append(HumanMessage(content=msg['content']))
|
66 |
+
elif msg['role'] == "assistant":
|
67 |
+
history_langchain_format.append(AIMessage(content=msg['content']))
|
68 |
+
history_langchain_format.append(HumanMessage(content=message))
|
69 |
+
rag_response = stream_chat_with_rag(history_langchain_format,year)[0]
|
70 |
+
|
71 |
+
# response = f"Year selected: {year}. Here's a response."
|
72 |
+
# answer = stream_chat_with_rag(user_message, year)[0]
|
73 |
+
# chat_history.append((user_message, response +"\n"+ answer))
|
74 |
+
return rag_response
|
75 |
|
76 |
chatbot_state = gr.State([])
|
77 |
|
|
|
204 |
gr.Markdown("Ask questions about election-related comments and posts")
|
205 |
|
206 |
with gr.Row():
|
207 |
+
# with gr.Column():
|
208 |
+
# year_selector = gr.Radio(
|
209 |
+
# choices=["2016 Election", "2024 Election", "Comparison two years"],
|
210 |
+
# label="Select Election Year",
|
211 |
+
# value="2016 Election"
|
212 |
+
# )
|
213 |
|
214 |
+
# query_input = gr.Textbox(
|
215 |
+
# label="Your Question",
|
216 |
+
# placeholder="Ask about election comments or posts..."
|
217 |
+
# )
|
218 |
|
219 |
+
# submit_btn = gr.Button("Submit")
|
220 |
|
221 |
+
# gr.Markdown("""
|
222 |
+
# ## Example Questions:
|
223 |
+
# - Is there any comments don't like the election results
|
224 |
+
# - Summarize the main discussions about voting process
|
225 |
+
# - What are the common opinions about candidates?
|
226 |
+
# """)
|
227 |
# with gr.Column():
|
228 |
# output_text = gr.Textbox(
|
229 |
# label="Response",
|
|
|
231 |
# )
|
232 |
|
233 |
with gr.Column():
|
234 |
+
chatbot = gr.ChatInterface(chat_function,
|
235 |
+
type="messages",
|
236 |
+
addtional_inputs = [
|
237 |
+
year_selector = gr.Radio(
|
238 |
+
choices=["2016 Election", "2024 Election", "Comparison two years"],
|
239 |
+
label="Select Election Year",
|
240 |
+
value="2016 Election"
|
241 |
+
)
|
242 |
+
])
|
243 |
|
244 |
gr.Markdown("## Top works of the relevant Q&A")
|
245 |
# with gr.Row():
|
|
|
280 |
outputs = [time_series_fig, linePlot_status_text]
|
281 |
)
|
282 |
|
283 |
+
# # Update both outputs when submit is clicked
|
284 |
+
# submit_btn.click(
|
285 |
+
# fn=chat_function,
|
286 |
+
# inputs=[query_input, year_selector],
|
287 |
+
# outputs= chatbot
|
288 |
+
# )
|
289 |
|
290 |
|
291 |
if __name__ == "__main__":
|