import gradio as gr from gradio_client import Client, handle_file import seaborn as sns import matplotlib.pyplot as plt import os import pandas as pd from io import StringIO # Define your Hugging Face token (make sure to set it as an environment variable) HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable # Initialize the Gradio Client for the specified API client = Client("mangoesai/Elections_Comparison_Agent_V4", hf_token=HF_TOKEN) # client_name = ['2016 Election','2024 Election', 'Comparison two years'] def stream_chat_with_rag( message: str, # history: list, client_name: str ): # print(f"Message: {message}") #answer = client.predict(question=question, api_name="/run_graph") answer, fig = client.predict( query= message, election_year=client_name, api_name="/process_query" ) # Debugging: Print the raw response print("Raw answer from API:") print(answer) print("top works from API:") print(fig) # return answer, fig return answer def heatmap(top_n): # df = pd.read_csv('submission_emotiontopics2024GPTresult.csv') # topics_df = gr.Dataframe(value=df, label="Data Input") pivot_table = client.predict( top_n= top_n, api_name="/get_heatmap_pivot_table" ) print(pivot_table) print(type(pivot_table)) """ pivot_table is a dict like: {'headers': ['Index', 'economy', 'human rights', 'immigrant', 'politics'], 'data': [['anger', 55880.0, 557679.0, 147766.0, 180094.0], ['disgust', 26911.0, 123112.0, 64567.0, 46460.0], ['fear', 51466.0, 188898.0, 113174.0, 150578.0], ['neutral', 77005.0, 192945.0, 20549.0, 190793.0]], 'metadata': None} """ # transfere dictionary to df df = pd.DataFrame(pivot_table['data'], columns=pivot_table['headers']) df.set_index('Index', inplace=True) plt.figure(figsize=(10, 8)) sns.heatmap(df, cmap='YlOrRd', cbar_kws={'label': 'Weighted Frequency'}, square=True) plt.title(f'Top {top_n} Emotions vs Topics Weighted Frequency') plt.xlabel('Topics') plt.ylabel('Emotions') plt.xticks(rotation=45, ha='right') plt.tight_layout() return plt.gcf() # Create Gradio interface with gr.Blocks(title="Reddit Election Analysis") as demo: gr.Markdown("# Reddit Public sentiment & Social topic distribution ") with gr.Row(): with gr.Column(): with gr.Row(): top_n = gr.Dropdown(choices=[1,2,3,4,5,6,7,8,9,10]) with gr.Row(): fresh_btn = gr.Button("Refresh Heatmap") with gr.Column(): output_heatmap = gr.Plot( label="Top Public sentiment & Social topic Heatmap", container=True, # Ensures the plot is contained within its area elem_classes="heatmap-plot" # Add a custom class for styling ) gr.Markdown("# Reddit Election Posts/Comments Analysis") gr.Markdown("Ask questions about election-related comments and posts") with gr.Row(): with gr.Column(): year_selector = gr.Radio( choices=["2016 Election", "2024 Election", "Comparison two years"], label="Select Election Year", value="2016 Election" ) query_input = gr.Textbox( label="Your Question", placeholder="Ask about election comments or posts..." ) submit_btn = gr.Button("Submit") gr.Markdown(""" ## Example Questions: - Is there any comments don't like the election results - Summarize the main discussions about voting process - What are the common opinions about candidates? """) with gr.Column(): output_text = gr.Textbox( label="Response", lines=20 ) with gr.Row(): output_plot = gr.Plot( label="Topic Distribution", container=True, # Ensures the plot is contained within its area elem_classes="topic-plot" # Add a custom class for styling ) # Add custom CSS to ensure proper plot sizing gr.HTML(""" """) fresh_btn.click( fn=heatmap, inputs=top_n, outputs=output_heatmap ) # Update both outputs when submit is clicked # submit_btn.click( # fn=stream_chat_with_rag, # inputs=[query_input, year_selector], # outputs=[output_text, output_plot] # ) submit_btn.click( fn=stream_chat_with_rag, inputs=[query_input, year_selector], outputs=output_text ) if __name__ == "__main__": demo.launch(share=True)