Spaces:
Runtime error
Runtime error
File size: 6,291 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torch.nn.utils.spectral_norm as spectral_norm
from models.networks.normalization import SPADE
# ResNet block that uses SPADE.
# It differs from the ResNet block of pix2pixHD in that
# it takes in the segmentation map as input, learns the skip connection if necessary,
# and applies normalization first and then convolution.
# This architecture seemed like a standard architecture for unconditional or
# class-conditional GAN architecture using residual block.
# The code was inspired from https://github.com/LMescheder/GAN_stability.
class SPADEResnetBlock(nn.Module):
def __init__(self, fin, fout, opt):
super().__init__()
# Attributes
self.learned_shortcut = fin != fout
fmiddle = min(fin, fout)
self.opt = opt
# create conv layers
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
# apply spectral norm if specified
if "spectral" in opt.norm_G:
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
# define normalization layers
spade_config_str = opt.norm_G.replace("spectral", "")
self.norm_0 = SPADE(spade_config_str, fin, opt.semantic_nc, opt)
self.norm_1 = SPADE(spade_config_str, fmiddle, opt.semantic_nc, opt)
if self.learned_shortcut:
self.norm_s = SPADE(spade_config_str, fin, opt.semantic_nc, opt)
# note the resnet block with SPADE also takes in |seg|,
# the semantic segmentation map as input
def forward(self, x, seg, degraded_image):
x_s = self.shortcut(x, seg, degraded_image)
dx = self.conv_0(self.actvn(self.norm_0(x, seg, degraded_image)))
dx = self.conv_1(self.actvn(self.norm_1(dx, seg, degraded_image)))
out = x_s + dx
return out
def shortcut(self, x, seg, degraded_image):
if self.learned_shortcut:
x_s = self.conv_s(self.norm_s(x, seg, degraded_image))
else:
x_s = x
return x_s
def actvn(self, x):
return F.leaky_relu(x, 2e-1)
# ResNet block used in pix2pixHD
# We keep the same architecture as pix2pixHD.
class ResnetBlock(nn.Module):
def __init__(self, dim, norm_layer, activation=nn.ReLU(False), kernel_size=3):
super().__init__()
pw = (kernel_size - 1) // 2
self.conv_block = nn.Sequential(
nn.ReflectionPad2d(pw),
norm_layer(nn.Conv2d(dim, dim, kernel_size=kernel_size)),
activation,
nn.ReflectionPad2d(pw),
norm_layer(nn.Conv2d(dim, dim, kernel_size=kernel_size)),
)
def forward(self, x):
y = self.conv_block(x)
out = x + y
return out
# VGG architecter, used for the perceptual loss using a pretrained VGG network
class VGG19(torch.nn.Module):
def __init__(self, requires_grad=False):
super().__init__()
vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class SPADEResnetBlock_non_spade(nn.Module):
def __init__(self, fin, fout, opt):
super().__init__()
# Attributes
self.learned_shortcut = fin != fout
fmiddle = min(fin, fout)
self.opt = opt
# create conv layers
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
# apply spectral norm if specified
if "spectral" in opt.norm_G:
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
# define normalization layers
spade_config_str = opt.norm_G.replace("spectral", "")
self.norm_0 = SPADE(spade_config_str, fin, opt.semantic_nc, opt)
self.norm_1 = SPADE(spade_config_str, fmiddle, opt.semantic_nc, opt)
if self.learned_shortcut:
self.norm_s = SPADE(spade_config_str, fin, opt.semantic_nc, opt)
# note the resnet block with SPADE also takes in |seg|,
# the semantic segmentation map as input
def forward(self, x, seg, degraded_image):
x_s = self.shortcut(x, seg, degraded_image)
dx = self.conv_0(self.actvn(x))
dx = self.conv_1(self.actvn(dx))
out = x_s + dx
return out
def shortcut(self, x, seg, degraded_image):
if self.learned_shortcut:
x_s = self.conv_s(x)
else:
x_s = x
return x_s
def actvn(self, x):
return F.leaky_relu(x, 2e-1)
|