File size: 8,343 Bytes
7fab858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import torch
import torch.nn as nn
import torch.nn.functional as F
from models.networks.base_network import BaseNetwork
from models.networks.normalization import get_nonspade_norm_layer
from models.networks.architecture import ResnetBlock as ResnetBlock
from models.networks.architecture import SPADEResnetBlock as SPADEResnetBlock
from models.networks.architecture import SPADEResnetBlock_non_spade as SPADEResnetBlock_non_spade


class SPADEGenerator(BaseNetwork):
    @staticmethod
    def modify_commandline_options(parser, is_train):
        parser.set_defaults(norm_G="spectralspadesyncbatch3x3")
        parser.add_argument(
            "--num_upsampling_layers",
            choices=("normal", "more", "most"),
            default="normal",
            help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator",
        )

        return parser

    def __init__(self, opt):
        super().__init__()
        self.opt = opt
        nf = opt.ngf

        self.sw, self.sh = self.compute_latent_vector_size(opt)

        print("The size of the latent vector size is [%d,%d]" % (self.sw, self.sh))

        if opt.use_vae:
            # In case of VAE, we will sample from random z vector
            self.fc = nn.Linear(opt.z_dim, 16 * nf * self.sw * self.sh)
        else:
            # Otherwise, we make the network deterministic by starting with
            # downsampled segmentation map instead of random z
            if self.opt.no_parsing_map:
                self.fc = nn.Conv2d(3, 16 * nf, 3, padding=1)
            else:
                self.fc = nn.Conv2d(self.opt.semantic_nc, 16 * nf, 3, padding=1)

        if self.opt.injection_layer == "all" or self.opt.injection_layer == "1":
            self.head_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt)
        else:
            self.head_0 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt)

        if self.opt.injection_layer == "all" or self.opt.injection_layer == "2":
            self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt)
            self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf, opt)

        else:
            self.G_middle_0 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt)
            self.G_middle_1 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt)

        if self.opt.injection_layer == "all" or self.opt.injection_layer == "3":
            self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf, opt)
        else:
            self.up_0 = SPADEResnetBlock_non_spade(16 * nf, 8 * nf, opt)

        if self.opt.injection_layer == "all" or self.opt.injection_layer == "4":
            self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf, opt)
        else:
            self.up_1 = SPADEResnetBlock_non_spade(8 * nf, 4 * nf, opt)

        if self.opt.injection_layer == "all" or self.opt.injection_layer == "5":
            self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf, opt)
        else:
            self.up_2 = SPADEResnetBlock_non_spade(4 * nf, 2 * nf, opt)

        if self.opt.injection_layer == "all" or self.opt.injection_layer == "6":
            self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf, opt)
        else:
            self.up_3 = SPADEResnetBlock_non_spade(2 * nf, 1 * nf, opt)

        final_nc = nf

        if opt.num_upsampling_layers == "most":
            self.up_4 = SPADEResnetBlock(1 * nf, nf // 2, opt)
            final_nc = nf // 2

        self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1)

        self.up = nn.Upsample(scale_factor=2)

    def compute_latent_vector_size(self, opt):
        if opt.num_upsampling_layers == "normal":
            num_up_layers = 5
        elif opt.num_upsampling_layers == "more":
            num_up_layers = 6
        elif opt.num_upsampling_layers == "most":
            num_up_layers = 7
        else:
            raise ValueError("opt.num_upsampling_layers [%s] not recognized" % opt.num_upsampling_layers)

        sw = opt.load_size // (2 ** num_up_layers)
        sh = round(sw / opt.aspect_ratio)

        return sw, sh

    def forward(self, input, degraded_image, z=None):
        seg = input

        if self.opt.use_vae:
            # we sample z from unit normal and reshape the tensor
            if z is None:
                z = torch.randn(input.size(0), self.opt.z_dim, dtype=torch.float32, device=input.get_device())
            x = self.fc(z)
            x = x.view(-1, 16 * self.opt.ngf, self.sh, self.sw)
        else:
            # we downsample segmap and run convolution
            if self.opt.no_parsing_map:
                x = F.interpolate(degraded_image, size=(self.sh, self.sw), mode="bilinear")
            else:
                x = F.interpolate(seg, size=(self.sh, self.sw), mode="nearest")
            x = self.fc(x)

        x = self.head_0(x, seg, degraded_image)

        x = self.up(x)
        x = self.G_middle_0(x, seg, degraded_image)

        if self.opt.num_upsampling_layers == "more" or self.opt.num_upsampling_layers == "most":
            x = self.up(x)

        x = self.G_middle_1(x, seg, degraded_image)

        x = self.up(x)
        x = self.up_0(x, seg, degraded_image)
        x = self.up(x)
        x = self.up_1(x, seg, degraded_image)
        x = self.up(x)
        x = self.up_2(x, seg, degraded_image)
        x = self.up(x)
        x = self.up_3(x, seg, degraded_image)

        if self.opt.num_upsampling_layers == "most":
            x = self.up(x)
            x = self.up_4(x, seg, degraded_image)

        x = self.conv_img(F.leaky_relu(x, 2e-1))
        x = F.tanh(x)

        return x


class Pix2PixHDGenerator(BaseNetwork):
    @staticmethod
    def modify_commandline_options(parser, is_train):
        parser.add_argument(
            "--resnet_n_downsample", type=int, default=4, help="number of downsampling layers in netG"
        )
        parser.add_argument(
            "--resnet_n_blocks",
            type=int,
            default=9,
            help="number of residual blocks in the global generator network",
        )
        parser.add_argument(
            "--resnet_kernel_size", type=int, default=3, help="kernel size of the resnet block"
        )
        parser.add_argument(
            "--resnet_initial_kernel_size", type=int, default=7, help="kernel size of the first convolution"
        )
        # parser.set_defaults(norm_G='instance')
        return parser

    def __init__(self, opt):
        super().__init__()
        input_nc = 3

        # print("xxxxx")
        # print(opt.norm_G)
        norm_layer = get_nonspade_norm_layer(opt, opt.norm_G)
        activation = nn.ReLU(False)

        model = []

        # initial conv
        model += [
            nn.ReflectionPad2d(opt.resnet_initial_kernel_size // 2),
            norm_layer(nn.Conv2d(input_nc, opt.ngf, kernel_size=opt.resnet_initial_kernel_size, padding=0)),
            activation,
        ]

        # downsample
        mult = 1
        for i in range(opt.resnet_n_downsample):
            model += [
                norm_layer(nn.Conv2d(opt.ngf * mult, opt.ngf * mult * 2, kernel_size=3, stride=2, padding=1)),
                activation,
            ]
            mult *= 2

        # resnet blocks
        for i in range(opt.resnet_n_blocks):
            model += [
                ResnetBlock(
                    opt.ngf * mult,
                    norm_layer=norm_layer,
                    activation=activation,
                    kernel_size=opt.resnet_kernel_size,
                )
            ]

        # upsample
        for i in range(opt.resnet_n_downsample):
            nc_in = int(opt.ngf * mult)
            nc_out = int((opt.ngf * mult) / 2)
            model += [
                norm_layer(
                    nn.ConvTranspose2d(nc_in, nc_out, kernel_size=3, stride=2, padding=1, output_padding=1)
                ),
                activation,
            ]
            mult = mult // 2

        # final output conv
        model += [
            nn.ReflectionPad2d(3),
            nn.Conv2d(nc_out, opt.output_nc, kernel_size=7, padding=0),
            nn.Tanh(),
        ]

        self.model = nn.Sequential(*model)

    def forward(self, input, degraded_image, z=None):
        return self.model(degraded_image)