File size: 10,935 Bytes
7fab858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import sys
import argparse
import os
from util import util
import torch
import models
import data
import pickle


class BaseOptions:
    def __init__(self):
        self.initialized = False

    def initialize(self, parser):
        # experiment specifics
        parser.add_argument(
            "--name",
            type=str,
            default="label2coco",
            help="name of the experiment. It decides where to store samples and models",
        )

        parser.add_argument(
            "--gpu_ids", type=str, default="0", help="gpu ids: e.g. 0  0,1,2, 0,2. use -1 for CPU"
        )
        parser.add_argument(
            "--checkpoints_dir", type=str, default="./checkpoints", help="models are saved here"
        )
        parser.add_argument("--model", type=str, default="pix2pix", help="which model to use")
        parser.add_argument(
            "--norm_G",
            type=str,
            default="spectralinstance",
            help="instance normalization or batch normalization",
        )
        parser.add_argument(
            "--norm_D",
            type=str,
            default="spectralinstance",
            help="instance normalization or batch normalization",
        )
        parser.add_argument(
            "--norm_E",
            type=str,
            default="spectralinstance",
            help="instance normalization or batch normalization",
        )
        parser.add_argument("--phase", type=str, default="train", help="train, val, test, etc")

        # input/output sizes
        parser.add_argument("--batchSize", type=int, default=1, help="input batch size")
        parser.add_argument(
            "--preprocess_mode",
            type=str,
            default="scale_width_and_crop",
            help="scaling and cropping of images at load time.",
            choices=(
                "resize_and_crop",
                "crop",
                "scale_width",
                "scale_width_and_crop",
                "scale_shortside",
                "scale_shortside_and_crop",
                "fixed",
                "none",
                "resize",
            ),
        )
        parser.add_argument(
            "--load_size",
            type=int,
            default=1024,
            help="Scale images to this size. The final image will be cropped to --crop_size.",
        )
        parser.add_argument(
            "--crop_size",
            type=int,
            default=512,
            help="Crop to the width of crop_size (after initially scaling the images to load_size.)",
        )
        parser.add_argument(
            "--aspect_ratio",
            type=float,
            default=1.0,
            help="The ratio width/height. The final height of the load image will be crop_size/aspect_ratio",
        )
        parser.add_argument(
            "--label_nc",
            type=int,
            default=182,
            help="# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.",
        )
        parser.add_argument(
            "--contain_dontcare_label",
            action="store_true",
            help="if the label map contains dontcare label (dontcare=255)",
        )
        parser.add_argument("--output_nc", type=int, default=3, help="# of output image channels")

        # for setting inputs
        parser.add_argument("--dataroot", type=str, default="./datasets/cityscapes/")
        parser.add_argument("--dataset_mode", type=str, default="coco")
        parser.add_argument(
            "--serial_batches",
            action="store_true",
            help="if true, takes images in order to make batches, otherwise takes them randomly",
        )
        parser.add_argument(
            "--no_flip",
            action="store_true",
            help="if specified, do not flip the images for data argumentation",
        )
        parser.add_argument("--nThreads", default=0, type=int, help="# threads for loading data")
        parser.add_argument(
            "--max_dataset_size",
            type=int,
            default=sys.maxsize,
            help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.",
        )
        parser.add_argument(
            "--load_from_opt_file",
            action="store_true",
            help="load the options from checkpoints and use that as default",
        )
        parser.add_argument(
            "--cache_filelist_write",
            action="store_true",
            help="saves the current filelist into a text file, so that it loads faster",
        )
        parser.add_argument(
            "--cache_filelist_read", action="store_true", help="reads from the file list cache"
        )

        # for displays
        parser.add_argument("--display_winsize", type=int, default=400, help="display window size")

        # for generator
        parser.add_argument(
            "--netG", type=str, default="spade", help="selects model to use for netG (pix2pixhd | spade)"
        )
        parser.add_argument("--ngf", type=int, default=64, help="# of gen filters in first conv layer")
        parser.add_argument(
            "--init_type",
            type=str,
            default="xavier",
            help="network initialization [normal|xavier|kaiming|orthogonal]",
        )
        parser.add_argument(
            "--init_variance", type=float, default=0.02, help="variance of the initialization distribution"
        )
        parser.add_argument("--z_dim", type=int, default=256, help="dimension of the latent z vector")
        parser.add_argument(
            "--no_parsing_map", action="store_true", help="During training, we do not use the parsing map"
        )

        # for instance-wise features
        parser.add_argument(
            "--no_instance", action="store_true", help="if specified, do *not* add instance map as input"
        )
        parser.add_argument(
            "--nef", type=int, default=16, help="# of encoder filters in the first conv layer"
        )
        parser.add_argument("--use_vae", action="store_true", help="enable training with an image encoder.")
        parser.add_argument(
            "--tensorboard_log", action="store_true", help="use tensorboard to record the resutls"
        )

        # parser.add_argument('--img_dir',)
        parser.add_argument(
            "--old_face_folder", type=str, default="", help="The folder name of input old face"
        )
        parser.add_argument(
            "--old_face_label_folder", type=str, default="", help="The folder name of input old face label"
        )

        parser.add_argument("--injection_layer", type=str, default="all", help="")

        self.initialized = True
        return parser

    def gather_options(self):
        # initialize parser with basic options
        if not self.initialized:
            parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
            parser = self.initialize(parser)

        # get the basic options
        opt, unknown = parser.parse_known_args()

        # modify model-related parser options
        model_name = opt.model
        model_option_setter = models.get_option_setter(model_name)
        parser = model_option_setter(parser, self.isTrain)

        # modify dataset-related parser options
        # dataset_mode = opt.dataset_mode
        # dataset_option_setter = data.get_option_setter(dataset_mode)
        # parser = dataset_option_setter(parser, self.isTrain)

        opt, unknown = parser.parse_known_args()

        # if there is opt_file, load it.
        # The previous default options will be overwritten
        if opt.load_from_opt_file:
            parser = self.update_options_from_file(parser, opt)

        opt = parser.parse_args()
        self.parser = parser
        return opt

    def print_options(self, opt):
        message = ""
        message += "----------------- Options ---------------\n"
        for k, v in sorted(vars(opt).items()):
            comment = ""
            default = self.parser.get_default(k)
            if v != default:
                comment = "\t[default: %s]" % str(default)
            message += "{:>25}: {:<30}{}\n".format(str(k), str(v), comment)
        message += "----------------- End -------------------"
        # print(message)

    def option_file_path(self, opt, makedir=False):
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        if makedir:
            util.mkdirs(expr_dir)
        file_name = os.path.join(expr_dir, "opt")
        return file_name

    def save_options(self, opt):
        file_name = self.option_file_path(opt, makedir=True)
        with open(file_name + ".txt", "wt") as opt_file:
            for k, v in sorted(vars(opt).items()):
                comment = ""
                default = self.parser.get_default(k)
                if v != default:
                    comment = "\t[default: %s]" % str(default)
                opt_file.write("{:>25}: {:<30}{}\n".format(str(k), str(v), comment))

        with open(file_name + ".pkl", "wb") as opt_file:
            pickle.dump(opt, opt_file)

    def update_options_from_file(self, parser, opt):
        new_opt = self.load_options(opt)
        for k, v in sorted(vars(opt).items()):
            if hasattr(new_opt, k) and v != getattr(new_opt, k):
                new_val = getattr(new_opt, k)
                parser.set_defaults(**{k: new_val})
        return parser

    def load_options(self, opt):
        file_name = self.option_file_path(opt, makedir=False)
        new_opt = pickle.load(open(file_name + ".pkl", "rb"))
        return new_opt

    def parse(self, save=False):

        opt = self.gather_options()
        opt.isTrain = self.isTrain  # train or test
        opt.contain_dontcare_label = False

        self.print_options(opt)
        if opt.isTrain:
            self.save_options(opt)

        # Set semantic_nc based on the option.
        # This will be convenient in many places
        opt.semantic_nc = (
            opt.label_nc + (1 if opt.contain_dontcare_label else 0) + (0 if opt.no_instance else 1)
        )

        # set gpu ids
        str_ids = opt.gpu_ids.split(",")
        opt.gpu_ids = []
        for str_id in str_ids:
            int_id = int(str_id)
            if int_id >= 0:
                opt.gpu_ids.append(int_id)

        if len(opt.gpu_ids) > 0:
            print("The main GPU is ")
            print(opt.gpu_ids[0])
            torch.cuda.set_device(opt.gpu_ids[0])

        assert (
            len(opt.gpu_ids) == 0 or opt.batchSize % len(opt.gpu_ids) == 0
        ), "Batch size %d is wrong. It must be a multiple of # GPUs %d." % (opt.batchSize, len(opt.gpu_ids))

        self.opt = opt
        return self.opt