Spaces:
Runtime error
Runtime error
File size: 6,590 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import re
import importlib
import torch
from argparse import Namespace
import numpy as np
from PIL import Image
import os
import argparse
import dill as pickle
def save_obj(obj, name):
with open(name, "wb") as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(name):
with open(name, "rb") as f:
return pickle.load(f)
def copyconf(default_opt, **kwargs):
conf = argparse.Namespace(**vars(default_opt))
for key in kwargs:
print(key, kwargs[key])
setattr(conf, key, kwargs[key])
return conf
# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False):
if isinstance(image_tensor, list):
image_numpy = []
for i in range(len(image_tensor)):
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
return image_numpy
if image_tensor.dim() == 4:
# transform each image in the batch
images_np = []
for b in range(image_tensor.size(0)):
one_image = image_tensor[b]
one_image_np = tensor2im(one_image)
images_np.append(one_image_np.reshape(1, *one_image_np.shape))
images_np = np.concatenate(images_np, axis=0)
return images_np
if image_tensor.dim() == 2:
image_tensor = image_tensor.unsqueeze(0)
image_numpy = image_tensor.detach().cpu().float().numpy()
if normalize:
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
else:
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
if image_numpy.shape[2] == 1:
image_numpy = image_numpy[:, :, 0]
return image_numpy.astype(imtype)
# Converts a one-hot tensor into a colorful label map
def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False):
if label_tensor.dim() == 4:
# transform each image in the batch
images_np = []
for b in range(label_tensor.size(0)):
one_image = label_tensor[b]
one_image_np = tensor2label(one_image, n_label, imtype)
images_np.append(one_image_np.reshape(1, *one_image_np.shape))
images_np = np.concatenate(images_np, axis=0)
# if tile:
# images_tiled = tile_images(images_np)
# return images_tiled
# else:
# images_np = images_np[0]
# return images_np
return images_np
if label_tensor.dim() == 1:
return np.zeros((64, 64, 3), dtype=np.uint8)
if n_label == 0:
return tensor2im(label_tensor, imtype)
label_tensor = label_tensor.cpu().float()
if label_tensor.size()[0] > 1:
label_tensor = label_tensor.max(0, keepdim=True)[1]
label_tensor = Colorize(n_label)(label_tensor)
label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
result = label_numpy.astype(imtype)
return result
def save_image(image_numpy, image_path, create_dir=False):
if create_dir:
os.makedirs(os.path.dirname(image_path), exist_ok=True)
if len(image_numpy.shape) == 2:
image_numpy = np.expand_dims(image_numpy, axis=2)
if image_numpy.shape[2] == 1:
image_numpy = np.repeat(image_numpy, 3, 2)
image_pil = Image.fromarray(image_numpy)
# save to png
image_pil.save(image_path.replace(".jpg", ".png"))
def mkdirs(paths):
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
"""
alist.sort(key=natural_keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
"""
return [atoi(c) for c in re.split("(\d+)", text)]
def natural_sort(items):
items.sort(key=natural_keys)
def str2bool(v):
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def find_class_in_module(target_cls_name, module):
target_cls_name = target_cls_name.replace("_", "").lower()
clslib = importlib.import_module(module)
cls = None
for name, clsobj in clslib.__dict__.items():
if name.lower() == target_cls_name:
cls = clsobj
if cls is None:
print(
"In %s, there should be a class whose name matches %s in lowercase without underscore(_)"
% (module, target_cls_name)
)
exit(0)
return cls
def save_network(net, label, epoch, opt):
save_filename = "%s_net_%s.pth" % (epoch, label)
save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename)
torch.save(net.cpu().state_dict(), save_path)
if len(opt.gpu_ids) and torch.cuda.is_available():
net.cuda()
def load_network(net, label, epoch, opt):
save_filename = "%s_net_%s.pth" % (epoch, label)
save_dir = os.path.join(opt.checkpoints_dir, opt.name)
save_path = os.path.join(save_dir, save_filename)
if os.path.exists(save_path):
weights = torch.load(save_path)
net.load_state_dict(weights)
return net
###############################################################################
# Code from
# https://github.com/ycszen/pytorch-seg/blob/master/transform.py
# Modified so it complies with the Citscape label map colors
###############################################################################
def uint82bin(n, count=8):
"""returns the binary of integer n, count refers to amount of bits"""
return "".join([str((n >> y) & 1) for y in range(count - 1, -1, -1)])
class Colorize(object):
def __init__(self, n=35):
self.cmap = labelcolormap(n)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, gray_image):
size = gray_image.size()
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
for label in range(0, len(self.cmap)):
mask = (label == gray_image[0]).cpu()
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
return color_image
|