File size: 6,590 Bytes
7fab858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import re
import importlib
import torch
from argparse import Namespace
import numpy as np
from PIL import Image
import os
import argparse
import dill as pickle


def save_obj(obj, name):
    with open(name, "wb") as f:
        pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)


def load_obj(name):
    with open(name, "rb") as f:
        return pickle.load(f)


def copyconf(default_opt, **kwargs):
    conf = argparse.Namespace(**vars(default_opt))
    for key in kwargs:
        print(key, kwargs[key])
        setattr(conf, key, kwargs[key])
    return conf


# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False):
    if isinstance(image_tensor, list):
        image_numpy = []
        for i in range(len(image_tensor)):
            image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
        return image_numpy

    if image_tensor.dim() == 4:
        # transform each image in the batch
        images_np = []
        for b in range(image_tensor.size(0)):
            one_image = image_tensor[b]
            one_image_np = tensor2im(one_image)
            images_np.append(one_image_np.reshape(1, *one_image_np.shape))
        images_np = np.concatenate(images_np, axis=0)

        return images_np

    if image_tensor.dim() == 2:
        image_tensor = image_tensor.unsqueeze(0)
    image_numpy = image_tensor.detach().cpu().float().numpy()
    if normalize:
        image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
    else:
        image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
    image_numpy = np.clip(image_numpy, 0, 255)
    if image_numpy.shape[2] == 1:
        image_numpy = image_numpy[:, :, 0]
    return image_numpy.astype(imtype)


# Converts a one-hot tensor into a colorful label map
def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False):
    if label_tensor.dim() == 4:
        # transform each image in the batch
        images_np = []
        for b in range(label_tensor.size(0)):
            one_image = label_tensor[b]
            one_image_np = tensor2label(one_image, n_label, imtype)
            images_np.append(one_image_np.reshape(1, *one_image_np.shape))
        images_np = np.concatenate(images_np, axis=0)
        # if tile:
        #     images_tiled = tile_images(images_np)
        #     return images_tiled
        # else:
        #     images_np = images_np[0]
        #     return images_np
        return images_np

    if label_tensor.dim() == 1:
        return np.zeros((64, 64, 3), dtype=np.uint8)
    if n_label == 0:
        return tensor2im(label_tensor, imtype)
    label_tensor = label_tensor.cpu().float()
    if label_tensor.size()[0] > 1:
        label_tensor = label_tensor.max(0, keepdim=True)[1]
    label_tensor = Colorize(n_label)(label_tensor)
    label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
    result = label_numpy.astype(imtype)
    return result


def save_image(image_numpy, image_path, create_dir=False):
    if create_dir:
        os.makedirs(os.path.dirname(image_path), exist_ok=True)
    if len(image_numpy.shape) == 2:
        image_numpy = np.expand_dims(image_numpy, axis=2)
    if image_numpy.shape[2] == 1:
        image_numpy = np.repeat(image_numpy, 3, 2)
    image_pil = Image.fromarray(image_numpy)

    # save to png
    image_pil.save(image_path.replace(".jpg", ".png"))


def mkdirs(paths):
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def atoi(text):
    return int(text) if text.isdigit() else text


def natural_keys(text):
    """
    alist.sort(key=natural_keys) sorts in human order
    http://nedbatchelder.com/blog/200712/human_sorting.html
    (See Toothy's implementation in the comments)
    """
    return [atoi(c) for c in re.split("(\d+)", text)]


def natural_sort(items):
    items.sort(key=natural_keys)


def str2bool(v):
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")


def find_class_in_module(target_cls_name, module):
    target_cls_name = target_cls_name.replace("_", "").lower()
    clslib = importlib.import_module(module)
    cls = None
    for name, clsobj in clslib.__dict__.items():
        if name.lower() == target_cls_name:
            cls = clsobj

    if cls is None:
        print(
            "In %s, there should be a class whose name matches %s in lowercase without underscore(_)"
            % (module, target_cls_name)
        )
        exit(0)

    return cls


def save_network(net, label, epoch, opt):
    save_filename = "%s_net_%s.pth" % (epoch, label)
    save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename)
    torch.save(net.cpu().state_dict(), save_path)
    if len(opt.gpu_ids) and torch.cuda.is_available():
        net.cuda()


def load_network(net, label, epoch, opt):
    save_filename = "%s_net_%s.pth" % (epoch, label)
    save_dir = os.path.join(opt.checkpoints_dir, opt.name)
    save_path = os.path.join(save_dir, save_filename)
    if os.path.exists(save_path):
        weights = torch.load(save_path)
        net.load_state_dict(weights)
    return net


###############################################################################
# Code from
# https://github.com/ycszen/pytorch-seg/blob/master/transform.py
# Modified so it complies with the Citscape label map colors
###############################################################################
def uint82bin(n, count=8):
    """returns the binary of integer n, count refers to amount of bits"""
    return "".join([str((n >> y) & 1) for y in range(count - 1, -1, -1)])


class Colorize(object):
    def __init__(self, n=35):
        self.cmap = labelcolormap(n)
        self.cmap = torch.from_numpy(self.cmap[:n])

    def __call__(self, gray_image):
        size = gray_image.size()
        color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)

        for label in range(0, len(self.cmap)):
            mask = (label == gray_image[0]).cpu()
            color_image[0][mask] = self.cmap[label][0]
            color_image[1][mask] = self.cmap[label][1]
            color_image[2][mask] = self.cmap[label][2]

        return color_image