Spaces:
Runtime error
Runtime error
File size: 15,313 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import os.path
import io
import zipfile
from data.base_dataset import BaseDataset, get_params, get_transform, normalize
from data.image_folder import make_dataset
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
from data.Load_Bigfile import BigFileMemoryLoader
import random
import cv2
from io import BytesIO
def pil_to_np(img_PIL):
'''Converts image in PIL format to np.array.
From W x H x C [0...255] to C x W x H [0..1]
'''
ar = np.array(img_PIL)
if len(ar.shape) == 3:
ar = ar.transpose(2, 0, 1)
else:
ar = ar[None, ...]
return ar.astype(np.float32) / 255.
def np_to_pil(img_np):
'''Converts image in np.array format to PIL image.
From C x W x H [0..1] to W x H x C [0...255]
'''
ar = np.clip(img_np * 255, 0, 255).astype(np.uint8)
if img_np.shape[0] == 1:
ar = ar[0]
else:
ar = ar.transpose(1, 2, 0)
return Image.fromarray(ar)
def synthesize_salt_pepper(image,amount,salt_vs_pepper):
## Give PIL, return the noisy PIL
img_pil=pil_to_np(image)
out = img_pil.copy()
p = amount
q = salt_vs_pepper
flipped = np.random.choice([True, False], size=img_pil.shape,
p=[p, 1 - p])
salted = np.random.choice([True, False], size=img_pil.shape,
p=[q, 1 - q])
peppered = ~salted
out[flipped & salted] = 1
out[flipped & peppered] = 0.
noisy = np.clip(out, 0, 1).astype(np.float32)
return np_to_pil(noisy)
def synthesize_gaussian(image,std_l,std_r):
## Give PIL, return the noisy PIL
img_pil=pil_to_np(image)
mean=0
std=random.uniform(std_l/255.,std_r/255.)
gauss=np.random.normal(loc=mean,scale=std,size=img_pil.shape)
noisy=img_pil+gauss
noisy=np.clip(noisy,0,1).astype(np.float32)
return np_to_pil(noisy)
def synthesize_speckle(image,std_l,std_r):
## Give PIL, return the noisy PIL
img_pil=pil_to_np(image)
mean=0
std=random.uniform(std_l/255.,std_r/255.)
gauss=np.random.normal(loc=mean,scale=std,size=img_pil.shape)
noisy=img_pil+gauss*img_pil
noisy=np.clip(noisy,0,1).astype(np.float32)
return np_to_pil(noisy)
def synthesize_low_resolution(img):
w,h=img.size
new_w=random.randint(int(w/2),w)
new_h=random.randint(int(h/2),h)
img=img.resize((new_w,new_h),Image.BICUBIC)
if random.uniform(0,1)<0.5:
img=img.resize((w,h),Image.NEAREST)
else:
img = img.resize((w, h), Image.BILINEAR)
return img
def convertToJpeg(im,quality):
with BytesIO() as f:
im.save(f, format='JPEG',quality=quality)
f.seek(0)
return Image.open(f).convert('RGB')
def blur_image_v2(img):
x=np.array(img)
kernel_size_candidate=[(3,3),(5,5),(7,7)]
kernel_size=random.sample(kernel_size_candidate,1)[0]
std=random.uniform(1.,5.)
#print("The gaussian kernel size: (%d,%d) std: %.2f"%(kernel_size[0],kernel_size[1],std))
blur=cv2.GaussianBlur(x,kernel_size,std)
return Image.fromarray(blur.astype(np.uint8))
def online_add_degradation_v2(img):
task_id=np.random.permutation(4)
for x in task_id:
if x==0 and random.uniform(0,1)<0.7:
img = blur_image_v2(img)
if x==1 and random.uniform(0,1)<0.7:
flag = random.choice([1, 2, 3])
if flag == 1:
img = synthesize_gaussian(img, 5, 50)
if flag == 2:
img = synthesize_speckle(img, 5, 50)
if flag == 3:
img = synthesize_salt_pepper(img, random.uniform(0, 0.01), random.uniform(0.3, 0.8))
if x==2 and random.uniform(0,1)<0.7:
img=synthesize_low_resolution(img)
if x==3 and random.uniform(0,1)<0.7:
img=convertToJpeg(img,random.randint(40,100))
return img
def irregular_hole_synthesize(img,mask):
img_np=np.array(img).astype('uint8')
mask_np=np.array(mask).astype('uint8')
mask_np=mask_np/255
img_new=img_np*(1-mask_np)+mask_np*255
hole_img=Image.fromarray(img_new.astype('uint8')).convert("RGB")
return hole_img,mask.convert("L")
def zero_mask(size):
x=np.zeros((size,size,3)).astype('uint8')
mask=Image.fromarray(x).convert("RGB")
return mask
class UnPairOldPhotos_SR(BaseDataset): ## Synthetic + Real Old
def initialize(self, opt):
self.opt = opt
self.isImage = 'domainA' in opt.name
self.task = 'old_photo_restoration_training_vae'
self.dir_AB = opt.dataroot
if self.isImage:
self.load_img_dir_L_old=os.path.join(self.dir_AB,"Real_L_old.bigfile")
self.load_img_dir_RGB_old=os.path.join(self.dir_AB,"Real_RGB_old.bigfile")
self.load_img_dir_clean=os.path.join(self.dir_AB,"VOC_RGB_JPEGImages.bigfile")
self.loaded_imgs_L_old=BigFileMemoryLoader(self.load_img_dir_L_old)
self.loaded_imgs_RGB_old=BigFileMemoryLoader(self.load_img_dir_RGB_old)
self.loaded_imgs_clean=BigFileMemoryLoader(self.load_img_dir_clean)
else:
# self.load_img_dir_clean=os.path.join(self.dir_AB,self.opt.test_dataset)
self.load_img_dir_clean=os.path.join(self.dir_AB,"VOC_RGB_JPEGImages.bigfile")
self.loaded_imgs_clean=BigFileMemoryLoader(self.load_img_dir_clean)
####
print("-------------Filter the imgs whose size <256 in VOC-------------")
self.filtered_imgs_clean=[]
for i in range(len(self.loaded_imgs_clean)):
img_name,img=self.loaded_imgs_clean[i]
h,w=img.size
if h<256 or w<256:
continue
self.filtered_imgs_clean.append((img_name,img))
print("--------Origin image num is [%d], filtered result is [%d]--------" % (
len(self.loaded_imgs_clean), len(self.filtered_imgs_clean)))
## Filter these images whose size is less than 256
# self.img_list=os.listdir(load_img_dir)
self.pid = os.getpid()
def __getitem__(self, index):
is_real_old=0
sampled_dataset=None
degradation=None
if self.isImage: ## domain A , contains 2 kinds of data: synthetic + real_old
P=random.uniform(0,2)
if P>=0 and P<1:
if random.uniform(0,1)<0.5:
sampled_dataset=self.loaded_imgs_L_old
self.load_img_dir=self.load_img_dir_L_old
else:
sampled_dataset=self.loaded_imgs_RGB_old
self.load_img_dir=self.load_img_dir_RGB_old
is_real_old=1
if P>=1 and P<2:
sampled_dataset=self.filtered_imgs_clean
self.load_img_dir=self.load_img_dir_clean
degradation=1
else:
sampled_dataset=self.filtered_imgs_clean
self.load_img_dir=self.load_img_dir_clean
sampled_dataset_len=len(sampled_dataset)
index=random.randint(0,sampled_dataset_len-1)
img_name,img = sampled_dataset[index]
if degradation is not None:
img=online_add_degradation_v2(img)
path=os.path.join(self.load_img_dir,img_name)
# AB = Image.open(path).convert('RGB')
# split AB image into A and B
# apply the same transform to both A and B
if random.uniform(0,1) <0.1:
img=img.convert("L")
img=img.convert("RGB")
## Give a probability P, we convert the RGB image into L
A=img
w,h=A.size
if w<256 or h<256:
A=transforms.Scale(256,Image.BICUBIC)(A)
## Since we want to only crop the images (256*256), for those old photos whose size is smaller than 256, we first resize them.
transform_params = get_params(self.opt, A.size)
A_transform = get_transform(self.opt, transform_params)
B_tensor = inst_tensor = feat_tensor = 0
A_tensor = A_transform(A)
input_dict = {'label': A_tensor, 'inst': is_real_old, 'image': A_tensor,
'feat': feat_tensor, 'path': path}
return input_dict
def __len__(self):
return len(self.loaded_imgs_clean) ## actually, this is useless, since the selected index is just a random number
def name(self):
return 'UnPairOldPhotos_SR'
class PairOldPhotos(BaseDataset):
def initialize(self, opt):
self.opt = opt
self.isImage = 'imagegan' in opt.name
self.task = 'old_photo_restoration_training_mapping'
self.dir_AB = opt.dataroot
if opt.isTrain:
self.load_img_dir_clean= os.path.join(self.dir_AB, "VOC_RGB_JPEGImages.bigfile")
self.loaded_imgs_clean = BigFileMemoryLoader(self.load_img_dir_clean)
print("-------------Filter the imgs whose size <256 in VOC-------------")
self.filtered_imgs_clean = []
for i in range(len(self.loaded_imgs_clean)):
img_name, img = self.loaded_imgs_clean[i]
h, w = img.size
if h < 256 or w < 256:
continue
self.filtered_imgs_clean.append((img_name, img))
print("--------Origin image num is [%d], filtered result is [%d]--------" % (
len(self.loaded_imgs_clean), len(self.filtered_imgs_clean)))
else:
self.load_img_dir=os.path.join(self.dir_AB,opt.test_dataset)
self.loaded_imgs=BigFileMemoryLoader(self.load_img_dir)
self.pid = os.getpid()
def __getitem__(self, index):
if self.opt.isTrain:
img_name_clean,B = self.filtered_imgs_clean[index]
path = os.path.join(self.load_img_dir_clean, img_name_clean)
if self.opt.use_v2_degradation:
A=online_add_degradation_v2(B)
### Remind: A is the input and B is corresponding GT
else:
if self.opt.test_on_synthetic:
img_name_B,B=self.loaded_imgs[index]
A=online_add_degradation_v2(B)
img_name_A=img_name_B
path = os.path.join(self.load_img_dir, img_name_A)
else:
img_name_A,A=self.loaded_imgs[index]
img_name_B,B=self.loaded_imgs[index]
path = os.path.join(self.load_img_dir, img_name_A)
if random.uniform(0,1)<0.1 and self.opt.isTrain:
A=A.convert("L")
B=B.convert("L")
A=A.convert("RGB")
B=B.convert("RGB")
## In P, we convert the RGB into L
##test on L
# split AB image into A and B
# w, h = img.size
# w2 = int(w / 2)
# A = img.crop((0, 0, w2, h))
# B = img.crop((w2, 0, w, h))
w,h=A.size
if w<256 or h<256:
A=transforms.Scale(256,Image.BICUBIC)(A)
B=transforms.Scale(256, Image.BICUBIC)(B)
# apply the same transform to both A and B
transform_params = get_params(self.opt, A.size)
A_transform = get_transform(self.opt, transform_params)
B_transform = get_transform(self.opt, transform_params)
B_tensor = inst_tensor = feat_tensor = 0
A_tensor = A_transform(A)
B_tensor = B_transform(B)
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': path}
return input_dict
def __len__(self):
if self.opt.isTrain:
return len(self.filtered_imgs_clean)
else:
return len(self.loaded_imgs)
def name(self):
return 'PairOldPhotos'
class PairOldPhotos_with_hole(BaseDataset):
def initialize(self, opt):
self.opt = opt
self.isImage = 'imagegan' in opt.name
self.task = 'old_photo_restoration_training_mapping'
self.dir_AB = opt.dataroot
if opt.isTrain:
self.load_img_dir_clean= os.path.join(self.dir_AB, "VOC_RGB_JPEGImages.bigfile")
self.loaded_imgs_clean = BigFileMemoryLoader(self.load_img_dir_clean)
print("-------------Filter the imgs whose size <256 in VOC-------------")
self.filtered_imgs_clean = []
for i in range(len(self.loaded_imgs_clean)):
img_name, img = self.loaded_imgs_clean[i]
h, w = img.size
if h < 256 or w < 256:
continue
self.filtered_imgs_clean.append((img_name, img))
print("--------Origin image num is [%d], filtered result is [%d]--------" % (
len(self.loaded_imgs_clean), len(self.filtered_imgs_clean)))
else:
self.load_img_dir=os.path.join(self.dir_AB,opt.test_dataset)
self.loaded_imgs=BigFileMemoryLoader(self.load_img_dir)
self.loaded_masks = BigFileMemoryLoader(opt.irregular_mask)
self.pid = os.getpid()
def __getitem__(self, index):
if self.opt.isTrain:
img_name_clean,B = self.filtered_imgs_clean[index]
path = os.path.join(self.load_img_dir_clean, img_name_clean)
B=transforms.RandomCrop(256)(B)
A=online_add_degradation_v2(B)
### Remind: A is the input and B is corresponding GT
else:
img_name_A,A=self.loaded_imgs[index]
img_name_B,B=self.loaded_imgs[index]
path = os.path.join(self.load_img_dir, img_name_A)
#A=A.resize((256,256))
A=transforms.CenterCrop(256)(A)
B=A
if random.uniform(0,1)<0.1 and self.opt.isTrain:
A=A.convert("L")
B=B.convert("L")
A=A.convert("RGB")
B=B.convert("RGB")
## In P, we convert the RGB into L
if self.opt.isTrain:
mask_name,mask=self.loaded_masks[random.randint(0,len(self.loaded_masks)-1)]
else:
mask_name, mask = self.loaded_masks[index%100]
mask = mask.resize((self.opt.loadSize, self.opt.loadSize), Image.NEAREST)
if self.opt.random_hole and random.uniform(0,1)>0.5 and self.opt.isTrain:
mask=zero_mask(256)
if self.opt.no_hole:
mask=zero_mask(256)
A,_=irregular_hole_synthesize(A,mask)
if not self.opt.isTrain and self.opt.hole_image_no_mask:
mask=zero_mask(256)
transform_params = get_params(self.opt, A.size)
A_transform = get_transform(self.opt, transform_params)
B_transform = get_transform(self.opt, transform_params)
if transform_params['flip'] and self.opt.isTrain:
mask=mask.transpose(Image.FLIP_LEFT_RIGHT)
mask_tensor = transforms.ToTensor()(mask)
B_tensor = inst_tensor = feat_tensor = 0
A_tensor = A_transform(A)
B_tensor = B_transform(B)
input_dict = {'label': A_tensor, 'inst': mask_tensor[:1], 'image': B_tensor,
'feat': feat_tensor, 'path': path}
return input_dict
def __len__(self):
if self.opt.isTrain:
return len(self.filtered_imgs_clean)
else:
return len(self.loaded_imgs)
def name(self):
return 'PairOldPhotos_with_hole' |