File size: 15,313 Bytes
7fab858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import os.path
import io
import zipfile
from data.base_dataset import BaseDataset, get_params, get_transform, normalize
from data.image_folder import make_dataset
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
from data.Load_Bigfile import BigFileMemoryLoader
import random
import cv2
from io import BytesIO

def pil_to_np(img_PIL):
    '''Converts image in PIL format to np.array.

    From W x H x C [0...255] to C x W x H [0..1]
    '''
    ar = np.array(img_PIL)

    if len(ar.shape) == 3:
        ar = ar.transpose(2, 0, 1)
    else:
        ar = ar[None, ...]

    return ar.astype(np.float32) / 255.


def np_to_pil(img_np):
    '''Converts image in np.array format to PIL image.

    From C x W x H [0..1] to  W x H x C [0...255]
    '''
    ar = np.clip(img_np * 255, 0, 255).astype(np.uint8)

    if img_np.shape[0] == 1:
        ar = ar[0]
    else:
        ar = ar.transpose(1, 2, 0)

    return Image.fromarray(ar)

def synthesize_salt_pepper(image,amount,salt_vs_pepper):

    ## Give PIL, return the noisy PIL

    img_pil=pil_to_np(image)

    out = img_pil.copy()
    p = amount
    q = salt_vs_pepper
    flipped = np.random.choice([True, False], size=img_pil.shape,
                               p=[p, 1 - p])
    salted = np.random.choice([True, False], size=img_pil.shape,
                              p=[q, 1 - q])
    peppered = ~salted
    out[flipped & salted] = 1
    out[flipped & peppered] = 0.
    noisy = np.clip(out, 0, 1).astype(np.float32)


    return np_to_pil(noisy)

def synthesize_gaussian(image,std_l,std_r):

    ## Give PIL, return the noisy PIL

    img_pil=pil_to_np(image)

    mean=0
    std=random.uniform(std_l/255.,std_r/255.)
    gauss=np.random.normal(loc=mean,scale=std,size=img_pil.shape)
    noisy=img_pil+gauss
    noisy=np.clip(noisy,0,1).astype(np.float32)

    return np_to_pil(noisy)

def synthesize_speckle(image,std_l,std_r):

    ## Give PIL, return the noisy PIL

    img_pil=pil_to_np(image)

    mean=0
    std=random.uniform(std_l/255.,std_r/255.)
    gauss=np.random.normal(loc=mean,scale=std,size=img_pil.shape)
    noisy=img_pil+gauss*img_pil
    noisy=np.clip(noisy,0,1).astype(np.float32)

    return np_to_pil(noisy)


def synthesize_low_resolution(img):
    w,h=img.size

    new_w=random.randint(int(w/2),w)
    new_h=random.randint(int(h/2),h)

    img=img.resize((new_w,new_h),Image.BICUBIC)

    if random.uniform(0,1)<0.5:
        img=img.resize((w,h),Image.NEAREST)
    else:
        img = img.resize((w, h), Image.BILINEAR)

    return img


def convertToJpeg(im,quality):
    with BytesIO() as f:
        im.save(f, format='JPEG',quality=quality)
        f.seek(0)
        return Image.open(f).convert('RGB')


def blur_image_v2(img):


    x=np.array(img)
    kernel_size_candidate=[(3,3),(5,5),(7,7)]
    kernel_size=random.sample(kernel_size_candidate,1)[0]
    std=random.uniform(1.,5.)

    #print("The gaussian kernel size: (%d,%d) std: %.2f"%(kernel_size[0],kernel_size[1],std))
    blur=cv2.GaussianBlur(x,kernel_size,std)

    return Image.fromarray(blur.astype(np.uint8))

def online_add_degradation_v2(img):

    task_id=np.random.permutation(4)

    for x in task_id:
        if x==0 and random.uniform(0,1)<0.7:
            img = blur_image_v2(img)
        if x==1 and random.uniform(0,1)<0.7:
            flag = random.choice([1, 2, 3])
            if flag == 1:
                img = synthesize_gaussian(img, 5, 50)
            if flag == 2:
                img = synthesize_speckle(img, 5, 50)
            if flag == 3:
                img = synthesize_salt_pepper(img, random.uniform(0, 0.01), random.uniform(0.3, 0.8))
        if x==2 and random.uniform(0,1)<0.7:
            img=synthesize_low_resolution(img)

        if x==3 and random.uniform(0,1)<0.7:
            img=convertToJpeg(img,random.randint(40,100))

    return img


def irregular_hole_synthesize(img,mask):

    img_np=np.array(img).astype('uint8')
    mask_np=np.array(mask).astype('uint8')
    mask_np=mask_np/255
    img_new=img_np*(1-mask_np)+mask_np*255


    hole_img=Image.fromarray(img_new.astype('uint8')).convert("RGB")

    return hole_img,mask.convert("L")

def zero_mask(size):
    x=np.zeros((size,size,3)).astype('uint8')
    mask=Image.fromarray(x).convert("RGB")
    return mask



class UnPairOldPhotos_SR(BaseDataset):  ## Synthetic + Real Old
    def initialize(self, opt):
        self.opt = opt
        self.isImage = 'domainA' in opt.name
        self.task = 'old_photo_restoration_training_vae'
        self.dir_AB = opt.dataroot
        if self.isImage:

            self.load_img_dir_L_old=os.path.join(self.dir_AB,"Real_L_old.bigfile")
            self.load_img_dir_RGB_old=os.path.join(self.dir_AB,"Real_RGB_old.bigfile")
            self.load_img_dir_clean=os.path.join(self.dir_AB,"VOC_RGB_JPEGImages.bigfile")

            self.loaded_imgs_L_old=BigFileMemoryLoader(self.load_img_dir_L_old)
            self.loaded_imgs_RGB_old=BigFileMemoryLoader(self.load_img_dir_RGB_old)
            self.loaded_imgs_clean=BigFileMemoryLoader(self.load_img_dir_clean)

        else:
            # self.load_img_dir_clean=os.path.join(self.dir_AB,self.opt.test_dataset)
            self.load_img_dir_clean=os.path.join(self.dir_AB,"VOC_RGB_JPEGImages.bigfile")
            self.loaded_imgs_clean=BigFileMemoryLoader(self.load_img_dir_clean)

        ####
        print("-------------Filter the imgs whose size <256 in VOC-------------")
        self.filtered_imgs_clean=[]
        for i in range(len(self.loaded_imgs_clean)):
            img_name,img=self.loaded_imgs_clean[i]
            h,w=img.size
            if h<256 or w<256:
                continue
            self.filtered_imgs_clean.append((img_name,img))

        print("--------Origin image num is [%d], filtered result is [%d]--------" % (
        len(self.loaded_imgs_clean), len(self.filtered_imgs_clean)))
        ## Filter these images whose size is less than 256

        # self.img_list=os.listdir(load_img_dir)
        self.pid = os.getpid()

    def __getitem__(self, index):


        is_real_old=0

        sampled_dataset=None
        degradation=None
        if self.isImage: ## domain A , contains 2 kinds of data: synthetic + real_old
            P=random.uniform(0,2)
            if P>=0 and P<1:
                if random.uniform(0,1)<0.5:
                    sampled_dataset=self.loaded_imgs_L_old
                    self.load_img_dir=self.load_img_dir_L_old
                else:
                    sampled_dataset=self.loaded_imgs_RGB_old
                    self.load_img_dir=self.load_img_dir_RGB_old
                is_real_old=1
            if P>=1 and P<2:
                sampled_dataset=self.filtered_imgs_clean
                self.load_img_dir=self.load_img_dir_clean
                degradation=1
        else:

            sampled_dataset=self.filtered_imgs_clean
            self.load_img_dir=self.load_img_dir_clean

        sampled_dataset_len=len(sampled_dataset)

        index=random.randint(0,sampled_dataset_len-1)

        img_name,img = sampled_dataset[index]

        if degradation is not None:
            img=online_add_degradation_v2(img)

        path=os.path.join(self.load_img_dir,img_name)

        # AB = Image.open(path).convert('RGB')
        # split AB image into A and B

        # apply the same transform to both A and B

        if random.uniform(0,1) <0.1:
            img=img.convert("L")
            img=img.convert("RGB")
            ## Give a probability P, we convert the RGB image into L


        A=img
        w,h=A.size
        if w<256 or h<256:
            A=transforms.Scale(256,Image.BICUBIC)(A)
        ## Since we want to only crop the images (256*256), for those old photos whose size is smaller than 256, we first resize them.

        transform_params = get_params(self.opt, A.size)
        A_transform = get_transform(self.opt, transform_params)

        B_tensor = inst_tensor = feat_tensor = 0
        A_tensor = A_transform(A)


        input_dict = {'label': A_tensor, 'inst': is_real_old, 'image': A_tensor,
                        'feat': feat_tensor, 'path': path}
        return input_dict

    def __len__(self):
        return len(self.loaded_imgs_clean) ## actually, this is useless, since the selected index is just a random number

    def name(self):
        return 'UnPairOldPhotos_SR'


class PairOldPhotos(BaseDataset):
    def initialize(self, opt):
        self.opt = opt
        self.isImage = 'imagegan' in opt.name
        self.task = 'old_photo_restoration_training_mapping'
        self.dir_AB = opt.dataroot
        if opt.isTrain:
            self.load_img_dir_clean= os.path.join(self.dir_AB, "VOC_RGB_JPEGImages.bigfile")
            self.loaded_imgs_clean = BigFileMemoryLoader(self.load_img_dir_clean)

            print("-------------Filter the imgs whose size <256 in VOC-------------")
            self.filtered_imgs_clean = []
            for i in range(len(self.loaded_imgs_clean)):
                img_name, img = self.loaded_imgs_clean[i]
                h, w = img.size
                if h < 256 or w < 256:
                    continue
                self.filtered_imgs_clean.append((img_name, img))

            print("--------Origin image num is [%d], filtered result is [%d]--------" % (
            len(self.loaded_imgs_clean), len(self.filtered_imgs_clean)))

        else:
            self.load_img_dir=os.path.join(self.dir_AB,opt.test_dataset)
            self.loaded_imgs=BigFileMemoryLoader(self.load_img_dir)

        self.pid = os.getpid()

    def __getitem__(self, index):



        if self.opt.isTrain:
            img_name_clean,B = self.filtered_imgs_clean[index]
            path = os.path.join(self.load_img_dir_clean, img_name_clean)
            if self.opt.use_v2_degradation:
                A=online_add_degradation_v2(B)
            ### Remind: A is the input and B is corresponding GT
        else:

            if self.opt.test_on_synthetic:

                img_name_B,B=self.loaded_imgs[index]
                A=online_add_degradation_v2(B)
                img_name_A=img_name_B
                path = os.path.join(self.load_img_dir, img_name_A)
            else:
                img_name_A,A=self.loaded_imgs[index]
                img_name_B,B=self.loaded_imgs[index]
                path = os.path.join(self.load_img_dir, img_name_A)


        if random.uniform(0,1)<0.1 and self.opt.isTrain:
            A=A.convert("L")
            B=B.convert("L")
            A=A.convert("RGB")
            B=B.convert("RGB")
        ## In P, we convert the RGB into L


        ##test on L

        # split AB image into A and B
        # w, h = img.size
        # w2 = int(w / 2)
        # A = img.crop((0, 0, w2, h))
        # B = img.crop((w2, 0, w, h))
        w,h=A.size
        if w<256 or h<256:
            A=transforms.Scale(256,Image.BICUBIC)(A)
            B=transforms.Scale(256, Image.BICUBIC)(B)

        # apply the same transform to both A and B
        transform_params = get_params(self.opt, A.size)
        A_transform = get_transform(self.opt, transform_params)
        B_transform = get_transform(self.opt, transform_params)

        B_tensor = inst_tensor = feat_tensor = 0
        A_tensor = A_transform(A)
        B_tensor = B_transform(B)

        input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
                    'feat': feat_tensor, 'path': path}
        return input_dict

    def __len__(self):

        if self.opt.isTrain:
            return len(self.filtered_imgs_clean)
        else:
            return len(self.loaded_imgs)

    def name(self):
        return 'PairOldPhotos'


class PairOldPhotos_with_hole(BaseDataset):
    def initialize(self, opt):
        self.opt = opt
        self.isImage = 'imagegan' in opt.name
        self.task = 'old_photo_restoration_training_mapping'
        self.dir_AB = opt.dataroot
        if opt.isTrain:
            self.load_img_dir_clean= os.path.join(self.dir_AB, "VOC_RGB_JPEGImages.bigfile")
            self.loaded_imgs_clean = BigFileMemoryLoader(self.load_img_dir_clean)

            print("-------------Filter the imgs whose size <256 in VOC-------------")
            self.filtered_imgs_clean = []
            for i in range(len(self.loaded_imgs_clean)):
                img_name, img = self.loaded_imgs_clean[i]
                h, w = img.size
                if h < 256 or w < 256:
                    continue
                self.filtered_imgs_clean.append((img_name, img))

            print("--------Origin image num is [%d], filtered result is [%d]--------" % (
            len(self.loaded_imgs_clean), len(self.filtered_imgs_clean)))

        else:
            self.load_img_dir=os.path.join(self.dir_AB,opt.test_dataset)
            self.loaded_imgs=BigFileMemoryLoader(self.load_img_dir)

        self.loaded_masks = BigFileMemoryLoader(opt.irregular_mask)

        self.pid = os.getpid()

    def __getitem__(self, index):



        if self.opt.isTrain:
            img_name_clean,B = self.filtered_imgs_clean[index]
            path = os.path.join(self.load_img_dir_clean, img_name_clean)


            B=transforms.RandomCrop(256)(B)
            A=online_add_degradation_v2(B)
            ### Remind: A is the input and B is corresponding GT

        else:
            img_name_A,A=self.loaded_imgs[index]
            img_name_B,B=self.loaded_imgs[index]
            path = os.path.join(self.load_img_dir, img_name_A)

            #A=A.resize((256,256))
            A=transforms.CenterCrop(256)(A)
            B=A

        if random.uniform(0,1)<0.1 and self.opt.isTrain:
            A=A.convert("L")
            B=B.convert("L")
            A=A.convert("RGB")
            B=B.convert("RGB")
        ## In P, we convert the RGB into L

        if self.opt.isTrain:
            mask_name,mask=self.loaded_masks[random.randint(0,len(self.loaded_masks)-1)]
        else:
            mask_name, mask = self.loaded_masks[index%100]
        mask = mask.resize((self.opt.loadSize, self.opt.loadSize), Image.NEAREST)

        if self.opt.random_hole and random.uniform(0,1)>0.5 and self.opt.isTrain:
            mask=zero_mask(256)

        if self.opt.no_hole:
            mask=zero_mask(256)


        A,_=irregular_hole_synthesize(A,mask)

        if not self.opt.isTrain and self.opt.hole_image_no_mask:
            mask=zero_mask(256)

        transform_params = get_params(self.opt, A.size)
        A_transform = get_transform(self.opt, transform_params)
        B_transform = get_transform(self.opt, transform_params)

        if transform_params['flip'] and self.opt.isTrain:
            mask=mask.transpose(Image.FLIP_LEFT_RIGHT)

        mask_tensor = transforms.ToTensor()(mask)


        B_tensor = inst_tensor = feat_tensor = 0
        A_tensor = A_transform(A)
        B_tensor = B_transform(B)

        input_dict = {'label': A_tensor, 'inst': mask_tensor[:1], 'image': B_tensor,
                    'feat': feat_tensor, 'path': path}
        return input_dict

    def __len__(self):

        if self.opt.isTrain:
            return len(self.filtered_imgs_clean)

        else:
            return len(self.loaded_imgs)

    def name(self):
        return 'PairOldPhotos_with_hole'