Spaces:
Runtime error
Runtime error
File size: 5,032 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import argparse
import gc
import json
import os
import time
import warnings
import numpy as np
import torch
import torch.nn.functional as F
import torchvision as tv
from PIL import Image, ImageFile
from detection_models import networks
from detection_util.util import *
warnings.filterwarnings("ignore", category=UserWarning)
ImageFile.LOAD_TRUNCATED_IMAGES = True
def data_transforms(img, full_size, method=Image.BICUBIC):
if full_size == "full_size":
ow, oh = img.size
h = int(round(oh / 16) * 16)
w = int(round(ow / 16) * 16)
if (h == oh) and (w == ow):
return img
return img.resize((w, h), method)
elif full_size == "scale_256":
ow, oh = img.size
pw, ph = ow, oh
if ow < oh:
ow = 256
oh = ph / pw * 256
else:
oh = 256
ow = pw / ph * 256
h = int(round(oh / 16) * 16)
w = int(round(ow / 16) * 16)
if (h == ph) and (w == pw):
return img
return img.resize((w, h), method)
def scale_tensor(img_tensor, default_scale=256):
_, _, w, h = img_tensor.shape
if w < h:
ow = default_scale
oh = h / w * default_scale
else:
oh = default_scale
ow = w / h * default_scale
oh = int(round(oh / 16) * 16)
ow = int(round(ow / 16) * 16)
return F.interpolate(img_tensor, [ow, oh], mode="bilinear")
def blend_mask(img, mask):
np_img = np.array(img).astype("float")
return Image.fromarray((np_img * (1 - mask) + mask * 255.0).astype("uint8")).convert("RGB")
def main(config):
print("initializing the dataloader")
model = networks.UNet(
in_channels=1,
out_channels=1,
depth=4,
conv_num=2,
wf=6,
padding=True,
batch_norm=True,
up_mode="upsample",
with_tanh=False,
sync_bn=True,
antialiasing=True,
)
## load model
checkpoint_path = os.path.join(os.path.dirname(__file__), "checkpoints/detection/FT_Epoch_latest.pt")
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model_state"])
print("model weights loaded")
if config.GPU >= 0:
model.to(config.GPU)
else:
model.cpu()
model.eval()
## dataloader and transformation
print("directory of testing image: " + config.test_path)
imagelist = os.listdir(config.test_path)
imagelist.sort()
total_iter = 0
P_matrix = {}
save_url = os.path.join(config.output_dir)
mkdir_if_not(save_url)
input_dir = os.path.join(save_url, "input")
output_dir = os.path.join(save_url, "mask")
# blend_output_dir=os.path.join(save_url, 'blend_output')
mkdir_if_not(input_dir)
mkdir_if_not(output_dir)
# mkdir_if_not(blend_output_dir)
idx = 0
results = []
for image_name in imagelist:
idx += 1
print("processing", image_name)
scratch_file = os.path.join(config.test_path, image_name)
if not os.path.isfile(scratch_file):
print("Skipping non-file %s" % image_name)
continue
scratch_image = Image.open(scratch_file).convert("RGB")
w, h = scratch_image.size
transformed_image_PIL = data_transforms(scratch_image, config.input_size)
scratch_image = transformed_image_PIL.convert("L")
scratch_image = tv.transforms.ToTensor()(scratch_image)
scratch_image = tv.transforms.Normalize([0.5], [0.5])(scratch_image)
scratch_image = torch.unsqueeze(scratch_image, 0)
_, _, ow, oh = scratch_image.shape
scratch_image_scale = scale_tensor(scratch_image)
if config.GPU >= 0:
scratch_image_scale = scratch_image_scale.to(config.GPU)
else:
scratch_image_scale = scratch_image_scale.cpu()
with torch.no_grad():
P = torch.sigmoid(model(scratch_image_scale))
P = P.data.cpu()
P = F.interpolate(P, [ow, oh], mode="nearest")
tv.utils.save_image(
(P >= 0.4).float(),
os.path.join(
output_dir,
image_name[:-4] + ".png",
),
nrow=1,
padding=0,
normalize=True,
)
transformed_image_PIL.save(os.path.join(input_dir, image_name[:-4] + ".png"))
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# parser.add_argument('--checkpoint_name', type=str, default="FT_Epoch_latest.pt", help='Checkpoint Name')
parser.add_argument("--GPU", type=int, default=0)
parser.add_argument("--test_path", type=str, default=".")
parser.add_argument("--output_dir", type=str, default=".")
parser.add_argument("--input_size", type=str, default="scale_256", help="resize_256|full_size|scale_256")
config = parser.parse_args()
main(config)
|