Spaces:
Runtime error
Runtime error
File size: 11,753 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
import torch.nn.functional as F
from detection_models.sync_batchnorm import DataParallelWithCallback
from detection_models.antialiasing import Downsample
class UNet(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
depth=5,
conv_num=2,
wf=6,
padding=True,
batch_norm=True,
up_mode="upsample",
with_tanh=False,
sync_bn=True,
antialiasing=True,
):
"""
Implementation of
U-Net: Convolutional Networks for Biomedical Image Segmentation
(Ronneberger et al., 2015)
https://arxiv.org/abs/1505.04597
Using the default arguments will yield the exact version used
in the original paper
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
depth (int): depth of the network
wf (int): number of filters in the first layer is 2**wf
padding (bool): if True, apply padding such that the input shape
is the same as the output.
This may introduce artifacts
batch_norm (bool): Use BatchNorm after layers with an
activation function
up_mode (str): one of 'upconv' or 'upsample'.
'upconv' will use transposed convolutions for
learned upsampling.
'upsample' will use bilinear upsampling.
"""
super().__init__()
assert up_mode in ("upconv", "upsample")
self.padding = padding
self.depth = depth - 1
prev_channels = in_channels
self.first = nn.Sequential(
*[nn.ReflectionPad2d(3), nn.Conv2d(in_channels, 2 ** wf, kernel_size=7), nn.LeakyReLU(0.2, True)]
)
prev_channels = 2 ** wf
self.down_path = nn.ModuleList()
self.down_sample = nn.ModuleList()
for i in range(depth):
if antialiasing and depth > 0:
self.down_sample.append(
nn.Sequential(
*[
nn.ReflectionPad2d(1),
nn.Conv2d(prev_channels, prev_channels, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(prev_channels),
nn.LeakyReLU(0.2, True),
Downsample(channels=prev_channels, stride=2),
]
)
)
else:
self.down_sample.append(
nn.Sequential(
*[
nn.ReflectionPad2d(1),
nn.Conv2d(prev_channels, prev_channels, kernel_size=4, stride=2, padding=0),
nn.BatchNorm2d(prev_channels),
nn.LeakyReLU(0.2, True),
]
)
)
self.down_path.append(
UNetConvBlock(conv_num, prev_channels, 2 ** (wf + i + 1), padding, batch_norm)
)
prev_channels = 2 ** (wf + i + 1)
self.up_path = nn.ModuleList()
for i in reversed(range(depth)):
self.up_path.append(
UNetUpBlock(conv_num, prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm)
)
prev_channels = 2 ** (wf + i)
if with_tanh:
self.last = nn.Sequential(
*[nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, out_channels, kernel_size=3), nn.Tanh()]
)
else:
self.last = nn.Sequential(
*[nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, out_channels, kernel_size=3)]
)
if sync_bn:
self = DataParallelWithCallback(self)
def forward(self, x):
x = self.first(x)
blocks = []
for i, down_block in enumerate(self.down_path):
blocks.append(x)
x = self.down_sample[i](x)
x = down_block(x)
for i, up in enumerate(self.up_path):
x = up(x, blocks[-i - 1])
return self.last(x)
class UNetConvBlock(nn.Module):
def __init__(self, conv_num, in_size, out_size, padding, batch_norm):
super(UNetConvBlock, self).__init__()
block = []
for _ in range(conv_num):
block.append(nn.ReflectionPad2d(padding=int(padding)))
block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=0))
if batch_norm:
block.append(nn.BatchNorm2d(out_size))
block.append(nn.LeakyReLU(0.2, True))
in_size = out_size
self.block = nn.Sequential(*block)
def forward(self, x):
out = self.block(x)
return out
class UNetUpBlock(nn.Module):
def __init__(self, conv_num, in_size, out_size, up_mode, padding, batch_norm):
super(UNetUpBlock, self).__init__()
if up_mode == "upconv":
self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2)
elif up_mode == "upsample":
self.up = nn.Sequential(
nn.Upsample(mode="bilinear", scale_factor=2, align_corners=False),
nn.ReflectionPad2d(1),
nn.Conv2d(in_size, out_size, kernel_size=3, padding=0),
)
self.conv_block = UNetConvBlock(conv_num, in_size, out_size, padding, batch_norm)
def center_crop(self, layer, target_size):
_, _, layer_height, layer_width = layer.size()
diff_y = (layer_height - target_size[0]) // 2
diff_x = (layer_width - target_size[1]) // 2
return layer[:, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + target_size[1])]
def forward(self, x, bridge):
up = self.up(x)
crop1 = self.center_crop(bridge, up.shape[2:])
out = torch.cat([up, crop1], 1)
out = self.conv_block(out)
return out
class UnetGenerator(nn.Module):
"""Create a Unet-based generator"""
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_type="BN", use_dropout=False):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super().__init__()
if norm_type == "BN":
norm_layer = nn.BatchNorm2d
elif norm_type == "IN":
norm_layer = nn.InstanceNorm2d
else:
raise NameError("Unknown norm layer")
# construct unet structure
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True
) # add the innermost layer
for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(
ngf * 8,
ngf * 8,
input_nc=None,
submodule=unet_block,
norm_layer=norm_layer,
use_dropout=use_dropout,
)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(
ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer
)
unet_block = UnetSkipConnectionBlock(
ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer
)
unet_block = UnetSkipConnectionBlock(
ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer
)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer
) # add the outermost layer
def forward(self, input):
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
-------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(
self,
outer_nc,
inner_nc,
input_nc=None,
submodule=None,
outermost=False,
innermost=False,
norm_layer=nn.BatchNorm2d,
use_dropout=False,
):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
user_dropout (bool) -- if use dropout layers.
"""
super().__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.LeakyReLU(0.2, True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(
inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias
)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
# ============================================
# Network testing
# ============================================
if __name__ == "__main__":
from torchsummary import summary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UNet_two_decoders(
in_channels=3,
out_channels1=3,
out_channels2=1,
depth=4,
conv_num=1,
wf=6,
padding=True,
batch_norm=True,
up_mode="upsample",
with_tanh=False,
)
model.to(device)
model_pix2pix = UnetGenerator(3, 3, 5, ngf=64, norm_type="BN", use_dropout=False)
model_pix2pix.to(device)
print("customized unet:")
summary(model, (3, 256, 256))
print("cyclegan unet:")
summary(model_pix2pix, (3, 256, 256))
x = torch.zeros(1, 3, 256, 256).requires_grad_(True).cuda()
g = make_dot(model(x))
g.render("models/Digraph.gv", view=False)
|