Spaces:
Runtime error
Runtime error
File size: 6,414 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import functools
from torch.autograd import Variable
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
import math
class Mapping_Model_with_mask(nn.Module):
def __init__(self, nc, mc=64, n_blocks=3, norm="instance", padding_type="reflect", opt=None):
super(Mapping_Model_with_mask, self).__init__()
norm_layer = networks.get_norm_layer(norm_type=norm)
activation = nn.ReLU(True)
model = []
tmp_nc = 64
n_up = 4
for i in range(n_up):
ic = min(tmp_nc * (2 ** i), mc)
oc = min(tmp_nc * (2 ** (i + 1)), mc)
model += [nn.Conv2d(ic, oc, 3, 1, 1), norm_layer(oc), activation]
self.before_NL = nn.Sequential(*model)
if opt.NL_res:
self.NL = networks.NonLocalBlock2D_with_mask_Res(
mc,
mc,
opt.NL_fusion_method,
opt.correlation_renormalize,
opt.softmax_temperature,
opt.use_self,
opt.cosin_similarity,
)
print("You are using NL + Res")
model = []
for i in range(n_blocks):
model += [
networks.ResnetBlock(
mc,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
opt=opt,
dilation=opt.mapping_net_dilation,
)
]
for i in range(n_up - 1):
ic = min(64 * (2 ** (4 - i)), mc)
oc = min(64 * (2 ** (3 - i)), mc)
model += [nn.Conv2d(ic, oc, 3, 1, 1), norm_layer(oc), activation]
model += [nn.Conv2d(tmp_nc * 2, tmp_nc, 3, 1, 1)]
if opt.feat_dim > 0 and opt.feat_dim < 64:
model += [norm_layer(tmp_nc), activation, nn.Conv2d(tmp_nc, opt.feat_dim, 1, 1)]
# model += [nn.Conv2d(64, 1, 1, 1, 0)]
self.after_NL = nn.Sequential(*model)
def forward(self, input, mask):
x1 = self.before_NL(input)
del input
x2 = self.NL(x1, mask)
del x1, mask
x3 = self.after_NL(x2)
del x2
return x3
class Mapping_Model_with_mask_2(nn.Module): ## Multi-Scale Patch Attention
def __init__(self, nc, mc=64, n_blocks=3, norm="instance", padding_type="reflect", opt=None):
super(Mapping_Model_with_mask_2, self).__init__()
norm_layer = networks.get_norm_layer(norm_type=norm)
activation = nn.ReLU(True)
model = []
tmp_nc = 64
n_up = 4
for i in range(n_up):
ic = min(tmp_nc * (2 ** i), mc)
oc = min(tmp_nc * (2 ** (i + 1)), mc)
model += [nn.Conv2d(ic, oc, 3, 1, 1), norm_layer(oc), activation]
for i in range(2):
model += [
networks.ResnetBlock(
mc,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
opt=opt,
dilation=opt.mapping_net_dilation,
)
]
print("Mapping: You are using multi-scale patch attention, conv combine + mask input")
self.before_NL = nn.Sequential(*model)
if opt.mapping_exp==1:
self.NL_scale_1=networks.Patch_Attention_4(mc,mc,8)
model = []
for i in range(2):
model += [
networks.ResnetBlock(
mc,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
opt=opt,
dilation=opt.mapping_net_dilation,
)
]
self.res_block_1 = nn.Sequential(*model)
if opt.mapping_exp==1:
self.NL_scale_2=networks.Patch_Attention_4(mc,mc,4)
model = []
for i in range(2):
model += [
networks.ResnetBlock(
mc,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
opt=opt,
dilation=opt.mapping_net_dilation,
)
]
self.res_block_2 = nn.Sequential(*model)
if opt.mapping_exp==1:
self.NL_scale_3=networks.Patch_Attention_4(mc,mc,2)
# self.NL_scale_3=networks.Patch_Attention_2(mc,mc,2)
model = []
for i in range(2):
model += [
networks.ResnetBlock(
mc,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
opt=opt,
dilation=opt.mapping_net_dilation,
)
]
for i in range(n_up - 1):
ic = min(64 * (2 ** (4 - i)), mc)
oc = min(64 * (2 ** (3 - i)), mc)
model += [nn.Conv2d(ic, oc, 3, 1, 1), norm_layer(oc), activation]
model += [nn.Conv2d(tmp_nc * 2, tmp_nc, 3, 1, 1)]
if opt.feat_dim > 0 and opt.feat_dim < 64:
model += [norm_layer(tmp_nc), activation, nn.Conv2d(tmp_nc, opt.feat_dim, 1, 1)]
# model += [nn.Conv2d(64, 1, 1, 1, 0)]
self.after_NL = nn.Sequential(*model)
def forward(self, input, mask):
x1 = self.before_NL(input)
x2 = self.NL_scale_1(x1,mask)
x3 = self.res_block_1(x2)
x4 = self.NL_scale_2(x3,mask)
x5 = self.res_block_2(x4)
x6 = self.NL_scale_3(x5,mask)
x7 = self.after_NL(x6)
return x7
def inference_forward(self, input, mask):
x1 = self.before_NL(input)
del input
x2 = self.NL_scale_1.inference_forward(x1,mask)
del x1
x3 = self.res_block_1(x2)
del x2
x4 = self.NL_scale_2.inference_forward(x3,mask)
del x3
x5 = self.res_block_2(x4)
del x4
x6 = self.NL_scale_3.inference_forward(x5,mask)
del x5
x7 = self.after_NL(x6)
del x6
return x7 |