Spaces:
Runtime error
Runtime error
File size: 13,758 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import functools
from torch.autograd import Variable
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
import math
from .NonLocal_feature_mapping_model import *
class Mapping_Model(nn.Module):
def __init__(self, nc, mc=64, n_blocks=3, norm="instance", padding_type="reflect", opt=None):
super(Mapping_Model, self).__init__()
norm_layer = networks.get_norm_layer(norm_type=norm)
activation = nn.ReLU(True)
model = []
tmp_nc = 64
n_up = 4
print("Mapping: You are using the mapping model without global restoration.")
for i in range(n_up):
ic = min(tmp_nc * (2 ** i), mc)
oc = min(tmp_nc * (2 ** (i + 1)), mc)
model += [nn.Conv2d(ic, oc, 3, 1, 1), norm_layer(oc), activation]
for i in range(n_blocks):
model += [
networks.ResnetBlock(
mc,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
opt=opt,
dilation=opt.mapping_net_dilation,
)
]
for i in range(n_up - 1):
ic = min(64 * (2 ** (4 - i)), mc)
oc = min(64 * (2 ** (3 - i)), mc)
model += [nn.Conv2d(ic, oc, 3, 1, 1), norm_layer(oc), activation]
model += [nn.Conv2d(tmp_nc * 2, tmp_nc, 3, 1, 1)]
if opt.feat_dim > 0 and opt.feat_dim < 64:
model += [norm_layer(tmp_nc), activation, nn.Conv2d(tmp_nc, opt.feat_dim, 1, 1)]
# model += [nn.Conv2d(64, 1, 1, 1, 0)]
self.model = nn.Sequential(*model)
def forward(self, input):
return self.model(input)
class Pix2PixHDModel_Mapping(BaseModel):
def name(self):
return "Pix2PixHDModel_Mapping"
def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss, use_smooth_l1, stage_1_feat_l2):
flags = (True, True, use_gan_feat_loss, use_vgg_loss, True, True, use_smooth_l1, stage_1_feat_l2)
def loss_filter(g_feat_l2, g_gan, g_gan_feat, g_vgg, d_real, d_fake, smooth_l1, stage_1_feat_l2):
return [
l
for (l, f) in zip(
(g_feat_l2, g_gan, g_gan_feat, g_vgg, d_real, d_fake, smooth_l1, stage_1_feat_l2), flags
)
if f
]
return loss_filter
def initialize(self, opt):
BaseModel.initialize(self, opt)
if opt.resize_or_crop != "none" or not opt.isTrain:
torch.backends.cudnn.benchmark = True
self.isTrain = opt.isTrain
input_nc = opt.label_nc if opt.label_nc != 0 else opt.input_nc
##### define networks
# Generator network
netG_input_nc = input_nc
self.netG_A = networks.GlobalGenerator_DCDCv2(
netG_input_nc,
opt.output_nc,
opt.ngf,
opt.k_size,
opt.n_downsample_global,
networks.get_norm_layer(norm_type=opt.norm),
opt=opt,
)
self.netG_B = networks.GlobalGenerator_DCDCv2(
netG_input_nc,
opt.output_nc,
opt.ngf,
opt.k_size,
opt.n_downsample_global,
networks.get_norm_layer(norm_type=opt.norm),
opt=opt,
)
if opt.non_local == "Setting_42" or opt.NL_use_mask:
if opt.mapping_exp==1:
self.mapping_net = Mapping_Model_with_mask_2(
min(opt.ngf * 2 ** opt.n_downsample_global, opt.mc),
opt.map_mc,
n_blocks=opt.mapping_n_block,
opt=opt,
)
else:
self.mapping_net = Mapping_Model_with_mask(
min(opt.ngf * 2 ** opt.n_downsample_global, opt.mc),
opt.map_mc,
n_blocks=opt.mapping_n_block,
opt=opt,
)
else:
self.mapping_net = Mapping_Model(
min(opt.ngf * 2 ** opt.n_downsample_global, opt.mc),
opt.map_mc,
n_blocks=opt.mapping_n_block,
opt=opt,
)
self.mapping_net.apply(networks.weights_init)
if opt.load_pretrain != "":
self.load_network(self.mapping_net, "mapping_net", opt.which_epoch, opt.load_pretrain)
if not opt.no_load_VAE:
self.load_network(self.netG_A, "G", opt.use_vae_which_epoch, opt.load_pretrainA)
self.load_network(self.netG_B, "G", opt.use_vae_which_epoch, opt.load_pretrainB)
for param in self.netG_A.parameters():
param.requires_grad = False
for param in self.netG_B.parameters():
param.requires_grad = False
self.netG_A.eval()
self.netG_B.eval()
if opt.gpu_ids:
self.netG_A.cuda(opt.gpu_ids[0])
self.netG_B.cuda(opt.gpu_ids[0])
self.mapping_net.cuda(opt.gpu_ids[0])
if not self.isTrain:
self.load_network(self.mapping_net, "mapping_net", opt.which_epoch)
# Discriminator network
if self.isTrain:
use_sigmoid = opt.no_lsgan
netD_input_nc = opt.ngf * 2 if opt.feat_gan else input_nc + opt.output_nc
if not opt.no_instance:
netD_input_nc += 1
self.netD = networks.define_D(netD_input_nc, opt.ndf, opt.n_layers_D, opt, opt.norm, use_sigmoid,
opt.num_D, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids)
# set loss functions and optimizers
if self.isTrain:
if opt.pool_size > 0 and (len(self.gpu_ids)) > 1:
raise NotImplementedError("Fake Pool Not Implemented for MultiGPU")
self.fake_pool = ImagePool(opt.pool_size)
self.old_lr = opt.lr
# define loss functions
self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss, opt.Smooth_L1, opt.use_two_stage_mapping)
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
self.criterionFeat = torch.nn.L1Loss()
self.criterionFeat_feat = torch.nn.L1Loss() if opt.use_l1_feat else torch.nn.MSELoss()
if self.opt.image_L1:
self.criterionImage=torch.nn.L1Loss()
else:
self.criterionImage = torch.nn.SmoothL1Loss()
print(self.criterionFeat_feat)
if not opt.no_vgg_loss:
self.criterionVGG = networks.VGGLoss_torch(self.gpu_ids)
# Names so we can breakout loss
self.loss_names = self.loss_filter('G_Feat_L2', 'G_GAN', 'G_GAN_Feat', 'G_VGG','D_real', 'D_fake', 'Smooth_L1', 'G_Feat_L2_Stage_1')
# initialize optimizers
# optimizer G
if opt.no_TTUR:
beta1,beta2=opt.beta1,0.999
G_lr,D_lr=opt.lr,opt.lr
else:
beta1,beta2=0,0.9
G_lr,D_lr=opt.lr/2,opt.lr*2
if not opt.no_load_VAE:
params = list(self.mapping_net.parameters())
self.optimizer_mapping = torch.optim.Adam(params, lr=G_lr, betas=(beta1, beta2))
# optimizer D
params = list(self.netD.parameters())
self.optimizer_D = torch.optim.Adam(params, lr=D_lr, betas=(beta1, beta2))
print("---------- Optimizers initialized -------------")
def encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):
if self.opt.label_nc == 0:
input_label = label_map.data.cuda()
else:
# create one-hot vector for label map
size = label_map.size()
oneHot_size = (size[0], self.opt.label_nc, size[2], size[3])
input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)
if self.opt.data_type == 16:
input_label = input_label.half()
# get edges from instance map
if not self.opt.no_instance:
inst_map = inst_map.data.cuda()
edge_map = self.get_edges(inst_map)
input_label = torch.cat((input_label, edge_map), dim=1)
input_label = Variable(input_label, volatile=infer)
# real images for training
if real_image is not None:
real_image = Variable(real_image.data.cuda())
return input_label, inst_map, real_image, feat_map
def discriminate(self, input_label, test_image, use_pool=False):
input_concat = torch.cat((input_label, test_image.detach()), dim=1)
if use_pool:
fake_query = self.fake_pool.query(input_concat)
return self.netD.forward(fake_query)
else:
return self.netD.forward(input_concat)
def forward(self, label, inst, image, feat, pair=True, infer=False, last_label=None, last_image=None):
# Encode Inputs
input_label, inst_map, real_image, feat_map = self.encode_input(label, inst, image, feat)
# Fake Generation
input_concat = input_label
label_feat = self.netG_A.forward(input_concat, flow='enc')
# print('label:')
# print(label_feat.min(), label_feat.max(), label_feat.mean())
#label_feat = label_feat / 16.0
if self.opt.NL_use_mask:
label_feat_map=self.mapping_net(label_feat.detach(),inst)
else:
label_feat_map = self.mapping_net(label_feat.detach())
fake_image = self.netG_B.forward(label_feat_map, flow='dec')
image_feat = self.netG_B.forward(real_image, flow='enc')
loss_feat_l2_stage_1=0
loss_feat_l2 = self.criterionFeat_feat(label_feat_map, image_feat.data) * self.opt.l2_feat
if self.opt.feat_gan:
# Fake Detection and Loss
pred_fake_pool = self.discriminate(label_feat.detach(), label_feat_map, use_pool=True)
loss_D_fake = self.criterionGAN(pred_fake_pool, False)
# Real Detection and Loss
pred_real = self.discriminate(label_feat.detach(), image_feat)
loss_D_real = self.criterionGAN(pred_real, True)
# GAN loss (Fake Passability Loss)
pred_fake = self.netD.forward(torch.cat((label_feat.detach(), label_feat_map), dim=1))
loss_G_GAN = self.criterionGAN(pred_fake, True)
else:
# Fake Detection and Loss
pred_fake_pool = self.discriminate(input_label, fake_image, use_pool=True)
loss_D_fake = self.criterionGAN(pred_fake_pool, False)
# Real Detection and Loss
if pair:
pred_real = self.discriminate(input_label, real_image)
else:
pred_real = self.discriminate(last_label, last_image)
loss_D_real = self.criterionGAN(pred_real, True)
# GAN loss (Fake Passability Loss)
pred_fake = self.netD.forward(torch.cat((input_label, fake_image), dim=1))
loss_G_GAN = self.criterionGAN(pred_fake, True)
# GAN feature matching loss
loss_G_GAN_Feat = 0
if not self.opt.no_ganFeat_loss and pair:
feat_weights = 4.0 / (self.opt.n_layers_D + 1)
D_weights = 1.0 / self.opt.num_D
for i in range(self.opt.num_D):
for j in range(len(pred_fake[i])-1):
tmp = self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * self.opt.lambda_feat
loss_G_GAN_Feat += D_weights * feat_weights * tmp
else:
loss_G_GAN_Feat = torch.zeros(1).to(label.device)
# VGG feature matching loss
loss_G_VGG = 0
if not self.opt.no_vgg_loss:
loss_G_VGG = self.criterionVGG(fake_image, real_image) * self.opt.lambda_feat if pair else torch.zeros(1).to(label.device)
smooth_l1_loss=0
if self.opt.Smooth_L1:
smooth_l1_loss=self.criterionImage(fake_image,real_image)*self.opt.L1_weight
return [ self.loss_filter(loss_feat_l2, loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_D_real, loss_D_fake,smooth_l1_loss,loss_feat_l2_stage_1), None if not infer else fake_image ]
def inference(self, label, inst):
use_gpu = len(self.opt.gpu_ids) > 0
if use_gpu:
input_concat = label.data.cuda()
inst_data = inst.cuda()
else:
input_concat = label.data
inst_data = inst
label_feat = self.netG_A.forward(input_concat, flow="enc")
if self.opt.NL_use_mask:
if self.opt.inference_optimize:
label_feat_map=self.mapping_net.inference_forward(label_feat.detach(),inst_data)
else:
label_feat_map = self.mapping_net(label_feat.detach(), inst_data)
else:
label_feat_map = self.mapping_net(label_feat.detach())
fake_image = self.netG_B.forward(label_feat_map, flow="dec")
return fake_image
class InferenceModel(Pix2PixHDModel_Mapping):
def forward(self, label, inst):
return self.inference(label, inst)
|