Spaces:
Runtime error
Runtime error
File size: 6,028 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import os
from collections import OrderedDict
from torch.autograd import Variable
from options.test_options import TestOptions
from models.models import create_model
from models.mapping_model import Pix2PixHDModel_Mapping
import util.util as util
from PIL import Image
import torch
import torchvision.utils as vutils
import torchvision.transforms as transforms
import numpy as np
import cv2
def data_transforms(img, method=Image.BILINEAR, scale=False):
ow, oh = img.size
pw, ph = ow, oh
if scale == True:
if ow < oh:
ow = 256
oh = ph / pw * 256
else:
oh = 256
ow = pw / ph * 256
h = int(round(oh / 4) * 4)
w = int(round(ow / 4) * 4)
if (h == ph) and (w == pw):
return img
return img.resize((w, h), method)
def data_transforms_rgb_old(img):
w, h = img.size
A = img
if w < 256 or h < 256:
A = transforms.Scale(256, Image.BILINEAR)(img)
return transforms.CenterCrop(256)(A)
def irregular_hole_synthesize(img, mask):
img_np = np.array(img).astype("uint8")
mask_np = np.array(mask).astype("uint8")
mask_np = mask_np / 255
img_new = img_np * (1 - mask_np) + mask_np * 255
hole_img = Image.fromarray(img_new.astype("uint8")).convert("RGB")
return hole_img
def parameter_set(opt):
## Default parameters
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
opt.label_nc = 0
opt.n_downsample_global = 3
opt.mc = 64
opt.k_size = 4
opt.start_r = 1
opt.mapping_n_block = 6
opt.map_mc = 512
opt.no_instance = True
opt.checkpoints_dir = "./checkpoints/restoration"
##
if opt.Quality_restore:
opt.name = "mapping_quality"
opt.load_pretrainA = os.path.join(opt.checkpoints_dir, "VAE_A_quality")
opt.load_pretrainB = os.path.join(opt.checkpoints_dir, "VAE_B_quality")
if opt.Scratch_and_Quality_restore:
opt.NL_res = True
opt.use_SN = True
opt.correlation_renormalize = True
opt.NL_use_mask = True
opt.NL_fusion_method = "combine"
opt.non_local = "Setting_42"
opt.name = "mapping_scratch"
opt.load_pretrainA = os.path.join(opt.checkpoints_dir, "VAE_A_quality")
opt.load_pretrainB = os.path.join(opt.checkpoints_dir, "VAE_B_scratch")
if opt.HR:
opt.mapping_exp = 1
opt.inference_optimize = True
opt.mask_dilation = 3
opt.name = "mapping_Patch_Attention"
if __name__ == "__main__":
opt = TestOptions().parse(save=False)
parameter_set(opt)
model = Pix2PixHDModel_Mapping()
model.initialize(opt)
model.eval()
if not os.path.exists(opt.outputs_dir + "/" + "input_image"):
os.makedirs(opt.outputs_dir + "/" + "input_image")
if not os.path.exists(opt.outputs_dir + "/" + "restored_image"):
os.makedirs(opt.outputs_dir + "/" + "restored_image")
if not os.path.exists(opt.outputs_dir + "/" + "origin"):
os.makedirs(opt.outputs_dir + "/" + "origin")
dataset_size = 0
input_loader = os.listdir(opt.test_input)
dataset_size = len(input_loader)
input_loader.sort()
if opt.test_mask != "":
mask_loader = os.listdir(opt.test_mask)
dataset_size = len(os.listdir(opt.test_mask))
mask_loader.sort()
img_transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
mask_transform = transforms.ToTensor()
for i in range(dataset_size):
input_name = input_loader[i]
input_file = os.path.join(opt.test_input, input_name)
if not os.path.isfile(input_file):
print("Skipping non-file %s" % input_name)
continue
input = Image.open(input_file).convert("RGB")
print("Now you are processing %s" % (input_name))
if opt.NL_use_mask:
mask_name = mask_loader[i]
mask = Image.open(os.path.join(opt.test_mask, mask_name)).convert("RGB")
if opt.mask_dilation != 0:
kernel = np.ones((3,3),np.uint8)
mask = np.array(mask)
mask = cv2.dilate(mask,kernel,iterations = opt.mask_dilation)
mask = Image.fromarray(mask.astype('uint8'))
origin = input
input = irregular_hole_synthesize(input, mask)
mask = mask_transform(mask)
mask = mask[:1, :, :] ## Convert to single channel
mask = mask.unsqueeze(0)
input = img_transform(input)
input = input.unsqueeze(0)
else:
if opt.test_mode == "Scale":
input = data_transforms(input, scale=True)
if opt.test_mode == "Full":
input = data_transforms(input, scale=False)
if opt.test_mode == "Crop":
input = data_transforms_rgb_old(input)
origin = input
input = img_transform(input)
input = input.unsqueeze(0)
mask = torch.zeros_like(input)
### Necessary input
try:
with torch.no_grad():
generated = model.inference(input, mask)
except Exception as ex:
print("Skip %s due to an error:\n%s" % (input_name, str(ex)))
continue
if input_name.endswith(".jpg"):
input_name = input_name[:-4] + ".png"
image_grid = vutils.save_image(
(input + 1.0) / 2.0,
opt.outputs_dir + "/input_image/" + input_name,
nrow=1,
padding=0,
normalize=True,
)
image_grid = vutils.save_image(
(generated.data.cpu() + 1.0) / 2.0,
opt.outputs_dir + "/restored_image/" + input_name,
nrow=1,
padding=0,
normalize=True,
)
origin.save(opt.outputs_dir + "/origin/" + input_name) |