Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT License. | |
import torch.nn as nn | |
from torch.nn import init | |
class BaseNetwork(nn.Module): | |
def __init__(self): | |
super(BaseNetwork, self).__init__() | |
def modify_commandline_options(parser, is_train): | |
return parser | |
def print_network(self): | |
if isinstance(self, list): | |
self = self[0] | |
num_params = 0 | |
for param in self.parameters(): | |
num_params += param.numel() | |
print( | |
"Network [%s] was created. Total number of parameters: %.1f million. " | |
"To see the architecture, do print(network)." % (type(self).__name__, num_params / 1000000) | |
) | |
def init_weights(self, init_type="normal", gain=0.02): | |
def init_func(m): | |
classname = m.__class__.__name__ | |
if classname.find("BatchNorm2d") != -1: | |
if hasattr(m, "weight") and m.weight is not None: | |
init.normal_(m.weight.data, 1.0, gain) | |
if hasattr(m, "bias") and m.bias is not None: | |
init.constant_(m.bias.data, 0.0) | |
elif hasattr(m, "weight") and (classname.find("Conv") != -1 or classname.find("Linear") != -1): | |
if init_type == "normal": | |
init.normal_(m.weight.data, 0.0, gain) | |
elif init_type == "xavier": | |
init.xavier_normal_(m.weight.data, gain=gain) | |
elif init_type == "xavier_uniform": | |
init.xavier_uniform_(m.weight.data, gain=1.0) | |
elif init_type == "kaiming": | |
init.kaiming_normal_(m.weight.data, a=0, mode="fan_in") | |
elif init_type == "orthogonal": | |
init.orthogonal_(m.weight.data, gain=gain) | |
elif init_type == "none": # uses pytorch's default init method | |
m.reset_parameters() | |
else: | |
raise NotImplementedError("initialization method [%s] is not implemented" % init_type) | |
if hasattr(m, "bias") and m.bias is not None: | |
init.constant_(m.bias.data, 0.0) | |
self.apply(init_func) | |
# propagate to children | |
for m in self.children(): | |
if hasattr(m, "init_weights"): | |
m.init_weights(init_type, gain) | |