Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT License. | |
import torch | |
import torch.nn.parallel | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Downsample(nn.Module): | |
# https://github.com/adobe/antialiased-cnns | |
def __init__(self, pad_type="reflect", filt_size=3, stride=2, channels=None, pad_off=0): | |
super(Downsample, self).__init__() | |
self.filt_size = filt_size | |
self.pad_off = pad_off | |
self.pad_sizes = [ | |
int(1.0 * (filt_size - 1) / 2), | |
int(np.ceil(1.0 * (filt_size - 1) / 2)), | |
int(1.0 * (filt_size - 1) / 2), | |
int(np.ceil(1.0 * (filt_size - 1) / 2)), | |
] | |
self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes] | |
self.stride = stride | |
self.off = int((self.stride - 1) / 2.0) | |
self.channels = channels | |
# print('Filter size [%i]'%filt_size) | |
if self.filt_size == 1: | |
a = np.array([1.0,]) | |
elif self.filt_size == 2: | |
a = np.array([1.0, 1.0]) | |
elif self.filt_size == 3: | |
a = np.array([1.0, 2.0, 1.0]) | |
elif self.filt_size == 4: | |
a = np.array([1.0, 3.0, 3.0, 1.0]) | |
elif self.filt_size == 5: | |
a = np.array([1.0, 4.0, 6.0, 4.0, 1.0]) | |
elif self.filt_size == 6: | |
a = np.array([1.0, 5.0, 10.0, 10.0, 5.0, 1.0]) | |
elif self.filt_size == 7: | |
a = np.array([1.0, 6.0, 15.0, 20.0, 15.0, 6.0, 1.0]) | |
filt = torch.Tensor(a[:, None] * a[None, :]) | |
filt = filt / torch.sum(filt) | |
self.register_buffer("filt", filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) | |
self.pad = get_pad_layer(pad_type)(self.pad_sizes) | |
def forward(self, inp): | |
if self.filt_size == 1: | |
if self.pad_off == 0: | |
return inp[:, :, :: self.stride, :: self.stride] | |
else: | |
return self.pad(inp)[:, :, :: self.stride, :: self.stride] | |
else: | |
return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) | |
def get_pad_layer(pad_type): | |
if pad_type in ["refl", "reflect"]: | |
PadLayer = nn.ReflectionPad2d | |
elif pad_type in ["repl", "replicate"]: | |
PadLayer = nn.ReplicationPad2d | |
elif pad_type == "zero": | |
PadLayer = nn.ZeroPad2d | |
else: | |
print("Pad type [%s] not recognized" % pad_type) | |
return PadLayer | |