# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import sys import argparse import os from util import util import torch import models import data import pickle class BaseOptions: def __init__(self): self.initialized = False def initialize(self, parser): # experiment specifics parser.add_argument( "--name", type=str, default="label2coco", help="name of the experiment. It decides where to store samples and models", ) parser.add_argument( "--gpu_ids", type=str, default="0", help="gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU" ) parser.add_argument( "--checkpoints_dir", type=str, default="./checkpoints", help="models are saved here" ) parser.add_argument("--model", type=str, default="pix2pix", help="which model to use") parser.add_argument( "--norm_G", type=str, default="spectralinstance", help="instance normalization or batch normalization", ) parser.add_argument( "--norm_D", type=str, default="spectralinstance", help="instance normalization or batch normalization", ) parser.add_argument( "--norm_E", type=str, default="spectralinstance", help="instance normalization or batch normalization", ) parser.add_argument("--phase", type=str, default="train", help="train, val, test, etc") # input/output sizes parser.add_argument("--batchSize", type=int, default=1, help="input batch size") parser.add_argument( "--preprocess_mode", type=str, default="scale_width_and_crop", help="scaling and cropping of images at load time.", choices=( "resize_and_crop", "crop", "scale_width", "scale_width_and_crop", "scale_shortside", "scale_shortside_and_crop", "fixed", "none", "resize", ), ) parser.add_argument( "--load_size", type=int, default=1024, help="Scale images to this size. The final image will be cropped to --crop_size.", ) parser.add_argument( "--crop_size", type=int, default=512, help="Crop to the width of crop_size (after initially scaling the images to load_size.)", ) parser.add_argument( "--aspect_ratio", type=float, default=1.0, help="The ratio width/height. The final height of the load image will be crop_size/aspect_ratio", ) parser.add_argument( "--label_nc", type=int, default=182, help="# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.", ) parser.add_argument( "--contain_dontcare_label", action="store_true", help="if the label map contains dontcare label (dontcare=255)", ) parser.add_argument("--output_nc", type=int, default=3, help="# of output image channels") # for setting inputs parser.add_argument("--dataroot", type=str, default="./datasets/cityscapes/") parser.add_argument("--dataset_mode", type=str, default="coco") parser.add_argument( "--serial_batches", action="store_true", help="if true, takes images in order to make batches, otherwise takes them randomly", ) parser.add_argument( "--no_flip", action="store_true", help="if specified, do not flip the images for data argumentation", ) parser.add_argument("--nThreads", default=0, type=int, help="# threads for loading data") parser.add_argument( "--max_dataset_size", type=int, default=sys.maxsize, help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.", ) parser.add_argument( "--load_from_opt_file", action="store_true", help="load the options from checkpoints and use that as default", ) parser.add_argument( "--cache_filelist_write", action="store_true", help="saves the current filelist into a text file, so that it loads faster", ) parser.add_argument( "--cache_filelist_read", action="store_true", help="reads from the file list cache" ) # for displays parser.add_argument("--display_winsize", type=int, default=400, help="display window size") # for generator parser.add_argument( "--netG", type=str, default="spade", help="selects model to use for netG (pix2pixhd | spade)" ) parser.add_argument("--ngf", type=int, default=64, help="# of gen filters in first conv layer") parser.add_argument( "--init_type", type=str, default="xavier", help="network initialization [normal|xavier|kaiming|orthogonal]", ) parser.add_argument( "--init_variance", type=float, default=0.02, help="variance of the initialization distribution" ) parser.add_argument("--z_dim", type=int, default=256, help="dimension of the latent z vector") parser.add_argument( "--no_parsing_map", action="store_true", help="During training, we do not use the parsing map" ) # for instance-wise features parser.add_argument( "--no_instance", action="store_true", help="if specified, do *not* add instance map as input" ) parser.add_argument( "--nef", type=int, default=16, help="# of encoder filters in the first conv layer" ) parser.add_argument("--use_vae", action="store_true", help="enable training with an image encoder.") parser.add_argument( "--tensorboard_log", action="store_true", help="use tensorboard to record the resutls" ) # parser.add_argument('--img_dir',) parser.add_argument( "--old_face_folder", type=str, default="", help="The folder name of input old face" ) parser.add_argument( "--old_face_label_folder", type=str, default="", help="The folder name of input old face label" ) parser.add_argument("--injection_layer", type=str, default="all", help="") self.initialized = True return parser def gather_options(self): # initialize parser with basic options if not self.initialized: parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = self.initialize(parser) # get the basic options opt, unknown = parser.parse_known_args() # modify model-related parser options model_name = opt.model model_option_setter = models.get_option_setter(model_name) parser = model_option_setter(parser, self.isTrain) # modify dataset-related parser options # dataset_mode = opt.dataset_mode # dataset_option_setter = data.get_option_setter(dataset_mode) # parser = dataset_option_setter(parser, self.isTrain) opt, unknown = parser.parse_known_args() # if there is opt_file, load it. # The previous default options will be overwritten if opt.load_from_opt_file: parser = self.update_options_from_file(parser, opt) opt = parser.parse_args() self.parser = parser return opt def print_options(self, opt): message = "" message += "----------------- Options ---------------\n" for k, v in sorted(vars(opt).items()): comment = "" default = self.parser.get_default(k) if v != default: comment = "\t[default: %s]" % str(default) message += "{:>25}: {:<30}{}\n".format(str(k), str(v), comment) message += "----------------- End -------------------" # print(message) def option_file_path(self, opt, makedir=False): expr_dir = os.path.join(opt.checkpoints_dir, opt.name) if makedir: util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, "opt") return file_name def save_options(self, opt): file_name = self.option_file_path(opt, makedir=True) with open(file_name + ".txt", "wt") as opt_file: for k, v in sorted(vars(opt).items()): comment = "" default = self.parser.get_default(k) if v != default: comment = "\t[default: %s]" % str(default) opt_file.write("{:>25}: {:<30}{}\n".format(str(k), str(v), comment)) with open(file_name + ".pkl", "wb") as opt_file: pickle.dump(opt, opt_file) def update_options_from_file(self, parser, opt): new_opt = self.load_options(opt) for k, v in sorted(vars(opt).items()): if hasattr(new_opt, k) and v != getattr(new_opt, k): new_val = getattr(new_opt, k) parser.set_defaults(**{k: new_val}) return parser def load_options(self, opt): file_name = self.option_file_path(opt, makedir=False) new_opt = pickle.load(open(file_name + ".pkl", "rb")) return new_opt def parse(self, save=False): opt = self.gather_options() opt.isTrain = self.isTrain # train or test opt.contain_dontcare_label = False self.print_options(opt) if opt.isTrain: self.save_options(opt) # Set semantic_nc based on the option. # This will be convenient in many places opt.semantic_nc = ( opt.label_nc + (1 if opt.contain_dontcare_label else 0) + (0 if opt.no_instance else 1) ) # set gpu ids str_ids = opt.gpu_ids.split(",") opt.gpu_ids = [] for str_id in str_ids: int_id = int(str_id) if int_id >= 0: opt.gpu_ids.append(int_id) if len(opt.gpu_ids) > 0: print("The main GPU is ") print(opt.gpu_ids[0]) torch.cuda.set_device(opt.gpu_ids[0]) assert ( len(opt.gpu_ids) == 0 or opt.batchSize % len(opt.gpu_ids) == 0 ), "Batch size %d is wrong. It must be a multiple of # GPUs %d." % (opt.batchSize, len(opt.gpu_ids)) self.opt = opt return self.opt