|
import streamlit as st |
|
import pandas as pd |
|
import pickle |
|
import requests |
|
import base64 |
|
|
|
|
|
st.set_page_config( |
|
page_title="ETDs Tagging", |
|
page_icon="", |
|
layout="wide" |
|
) |
|
st.header("Tagging Categories") |
|
st.subheader('Put your file here...') |
|
|
|
|
|
@st.cache_resource(ttl=3600) |
|
def create_list(): |
|
l = [1, 2, 3] |
|
return l |
|
|
|
l = create_list() |
|
first_list_value = l[0] |
|
l[0] = first_list_value + 1 |
|
uID = str(l[0]) |
|
|
|
@st.cache_data(ttl=3600) |
|
def get_ext(uploaded_file): |
|
extype = uID+uploaded_file.name |
|
return extype |
|
|
|
|
|
@st.cache_resource(ttl=3600) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_model(url): |
|
response = requests.get(url) |
|
open("temp.pkl", "wb").write(response.content) |
|
with open("temp.pkl", "rb") as f: |
|
svm_classifier = pickle.load(f) |
|
return svm_classifier |
|
|
|
|
|
def read_tf(url): |
|
response = requests.get(url) |
|
open("temp.pkl", "wb").write(response.content) |
|
with open("temp.pkl", "rb") as f: |
|
preprocessing = pickle.load(f) |
|
return preprocessing |
|
|
|
svm_classifier = read_model("https://github.com/manika-lamba/ml/raw/main/category/model2.pkl") |
|
preprocessing = read_tf("https://github.com/manika-lamba/ml/raw/main/category/preprocessing.pkl") |
|
|
|
|
|
def predict_category(abstract): |
|
|
|
abstract_preprocessed = preprocessing.transform([abstract]) |
|
|
|
prediction = svm_classifier.predict(abstract_preprocessed) |
|
return prediction |
|
|
|
|
|
|
|
@st.cache_data(ttl=3600) |
|
def upload(file): |
|
papers = pd.read_csv(uploaded_file) |
|
return papers |
|
|
|
@st.cache_data(ttl=3600) |
|
def conv_txt(extype): |
|
papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r') |
|
papers.rename(columns=col_dict, inplace=True) |
|
return papers |
|
|
|
|
|
|
|
uploaded_file = st.file_uploader("Choose a file", type=['csv']) |
|
st.sidebar.header("Download Results") |
|
st.sidebar.text("Download the tagged results as a CSV file.") |
|
|
|
if uploaded_file is not None: |
|
df = pd.read_csv(uploaded_file, encoding='latin-1') |
|
st.dataframe(df) |
|
|
|
|
|
df['category'] = df['Abstract'].apply(lambda x: predict_category(x)[0]) |
|
st.dataframe(df) |
|
|
|
|
|
csv = df.to_csv(index=False).encode('utf-8') |
|
b64 = base64.b64encode(csv).decode() |
|
|
|
st.sidebar.download_button( |
|
label="Download CSV", |
|
data=base64.b64decode(b64), |
|
file_name="results.csv", |
|
mime="text/csv", |
|
key='download-csv' |
|
) |