manika07 commited on
Commit
1d9dd26
Β·
1 Parent(s): 83574a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -26
app.py CHANGED
@@ -42,31 +42,31 @@ st.title("About")
42
  st.subheader("You can tag your input CSV file of theses and dissertations with Library Science, Archival Studies, and Information Science categories. The screen will show the output.")
43
 
44
  tab1, tab2, tab3 = st.tabs(["πŸ“ˆ Load Data", "πŸ“ƒ Tagged ETDs", "πŸ““ Download Data"])
45
- with tab1:
46
- #===load data===
47
- if uploaded_file is not None:
48
- df = pd.read_csv(uploaded_file, encoding='latin-1')
49
- st.dataframe(df)
50
 
51
 
52
- with tab2:
53
- #===tagged ETDs===
54
- # Tag the "Abstract" column with the corresponding categories
55
- df['category'] = df['Abstract'].apply(predict_category)
56
- st.dataframe(df)
57
- # Function to predict the category for a given abstract
58
- def predict_category(abstract):
59
- # Preprocess the abstract
60
- abstract_preprocessed = preprocessing.transform([abstract])
61
- # Make prediction
62
- prediction = svm_classifier.predict(abstract_preprocessed)
63
- return prediction
64
-
65
- with tab3:
66
- #===download result===
67
- # Create a download button
68
- if st.sidebar.button("Download"):
69
- csv = df.to_csv(index=False)
70
- b64 = base64.b64encode(csv.encode()).decode()
71
- href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
72
- st.markdown(href, unsafe_allow_html=True)
 
42
  st.subheader("You can tag your input CSV file of theses and dissertations with Library Science, Archival Studies, and Information Science categories. The screen will show the output.")
43
 
44
  tab1, tab2, tab3 = st.tabs(["πŸ“ˆ Load Data", "πŸ“ƒ Tagged ETDs", "πŸ““ Download Data"])
45
+ with tab1:
46
+ #===load data===
47
+ if uploaded_file is not None:
48
+ df = pd.read_csv(uploaded_file, encoding='latin-1')
49
+ st.dataframe(df)
50
 
51
 
52
+ with tab2:
53
+ #===tagged ETDs===
54
+ # Tag the "Abstract" column with the corresponding categories
55
+ df['category'] = df['Abstract'].apply(predict_category)
56
+ st.dataframe(df)
57
+ # Function to predict the category for a given abstract
58
+ def predict_category(abstract):
59
+ # Preprocess the abstract
60
+ abstract_preprocessed = preprocessing.transform([abstract])
61
+ # Make prediction
62
+ prediction = svm_classifier.predict(abstract_preprocessed)
63
+ return prediction
64
+
65
+ with tab3:
66
+ #===download result===
67
+ # Create a download button
68
+ if st.sidebar.button("Download"):
69
+ csv = df.to_csv(index=False)
70
+ b64 = base64.b64encode(csv.encode()).decode()
71
+ href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
72
+ st.markdown(href, unsafe_allow_html=True)