Update app.py
Browse files
app.py
CHANGED
@@ -42,31 +42,31 @@ st.title("About")
|
|
42 |
st.subheader("You can tag your input CSV file of theses and dissertations with Library Science, Archival Studies, and Information Science categories. The screen will show the output.")
|
43 |
|
44 |
tab1, tab2, tab3 = st.tabs(["π Load Data", "π Tagged ETDs", "π Download Data"])
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
42 |
st.subheader("You can tag your input CSV file of theses and dissertations with Library Science, Archival Studies, and Information Science categories. The screen will show the output.")
|
43 |
|
44 |
tab1, tab2, tab3 = st.tabs(["π Load Data", "π Tagged ETDs", "π Download Data"])
|
45 |
+
with tab1:
|
46 |
+
#===load data===
|
47 |
+
if uploaded_file is not None:
|
48 |
+
df = pd.read_csv(uploaded_file, encoding='latin-1')
|
49 |
+
st.dataframe(df)
|
50 |
|
51 |
|
52 |
+
with tab2:
|
53 |
+
#===tagged ETDs===
|
54 |
+
# Tag the "Abstract" column with the corresponding categories
|
55 |
+
df['category'] = df['Abstract'].apply(predict_category)
|
56 |
+
st.dataframe(df)
|
57 |
+
# Function to predict the category for a given abstract
|
58 |
+
def predict_category(abstract):
|
59 |
+
# Preprocess the abstract
|
60 |
+
abstract_preprocessed = preprocessing.transform([abstract])
|
61 |
+
# Make prediction
|
62 |
+
prediction = svm_classifier.predict(abstract_preprocessed)
|
63 |
+
return prediction
|
64 |
+
|
65 |
+
with tab3:
|
66 |
+
#===download result===
|
67 |
+
# Create a download button
|
68 |
+
if st.sidebar.button("Download"):
|
69 |
+
csv = df.to_csv(index=False)
|
70 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
71 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
|
72 |
+
st.markdown(href, unsafe_allow_html=True)
|