Update app.py
Browse files
app.py
CHANGED
@@ -25,13 +25,7 @@ def read_tf(url):
|
|
25 |
svm_classifier = read_model("https://github.com/manika-lamba/ml/raw/main/model2.pkl")
|
26 |
preprocessing = read_tf("https://github.com/manika-lamba/ml/raw/main/preprocessing.pkl")
|
27 |
|
28 |
-
|
29 |
-
def predict_category(abstract):
|
30 |
-
# Preprocess the abstract
|
31 |
-
abstract_preprocessed = preprocessing.transform([abstract])
|
32 |
-
# Make prediction
|
33 |
-
prediction = svm_classifier.predict(abstract_preprocessed)
|
34 |
-
return prediction
|
35 |
|
36 |
# Create sidebar
|
37 |
|
@@ -39,22 +33,40 @@ def predict_category(abstract):
|
|
39 |
st.sidebar.header("Choose CSV File with 'Abstract' field")
|
40 |
uploaded_file = st.sidebar.file_uploader("", type=["csv"])
|
41 |
|
42 |
-
if uploaded_file is not None:
|
43 |
-
df = pd.read_csv(uploaded_file, encoding='latin-1')
|
44 |
-
st.dataframe(df)
|
45 |
-
# Tag the "Abstract" column with the corresponding categories
|
46 |
-
df['category'] = df['Abstract'].apply(predict_category)
|
47 |
-
st.dataframe(df)
|
48 |
-
|
49 |
st.sidebar.header("Download Results")
|
50 |
st.sidebar.text("Download the tagged results as a CSV file.")
|
51 |
|
52 |
-
|
53 |
-
if st.sidebar.button("Download"):
|
54 |
-
csv = df.to_csv(index=False)
|
55 |
-
b64 = base64.b64encode(csv.encode()).decode()
|
56 |
-
href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
|
57 |
-
st.markdown(href, unsafe_allow_html=True)
|
58 |
|
59 |
st.title("About")
|
60 |
-
st.subheader("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
svm_classifier = read_model("https://github.com/manika-lamba/ml/raw/main/model2.pkl")
|
26 |
preprocessing = read_tf("https://github.com/manika-lamba/ml/raw/main/preprocessing.pkl")
|
27 |
|
28 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Create sidebar
|
31 |
|
|
|
33 |
st.sidebar.header("Choose CSV File with 'Abstract' field")
|
34 |
uploaded_file = st.sidebar.file_uploader("", type=["csv"])
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
st.sidebar.header("Download Results")
|
37 |
st.sidebar.text("Download the tagged results as a CSV file.")
|
38 |
|
39 |
+
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
st.title("About")
|
42 |
+
st.subheader("You can tag your input CSV file of theses and dissertations with Library Science, Archival Studies, and Information Science categories. The screen will show the output.")
|
43 |
+
|
44 |
+
tab1, tab2, tab3 = st.tabs(["π Load Data", "π Tagged ETDs", "π Download Data"])
|
45 |
+
with tab1:
|
46 |
+
#===load data===
|
47 |
+
if uploaded_file is not None:
|
48 |
+
df = pd.read_csv(uploaded_file, encoding='latin-1')
|
49 |
+
st.dataframe(df)
|
50 |
+
|
51 |
+
|
52 |
+
with tab2:
|
53 |
+
#===tagged ETDs===
|
54 |
+
# Tag the "Abstract" column with the corresponding categories
|
55 |
+
df['category'] = df['Abstract'].apply(predict_category)
|
56 |
+
st.dataframe(df)
|
57 |
+
# Function to predict the category for a given abstract
|
58 |
+
def predict_category(abstract):
|
59 |
+
# Preprocess the abstract
|
60 |
+
abstract_preprocessed = preprocessing.transform([abstract])
|
61 |
+
# Make prediction
|
62 |
+
prediction = svm_classifier.predict(abstract_preprocessed)
|
63 |
+
return prediction
|
64 |
+
|
65 |
+
with tab3:
|
66 |
+
#===download result===
|
67 |
+
# Create a download button
|
68 |
+
if st.sidebar.button("Download"):
|
69 |
+
csv = df.to_csv(index=False)
|
70 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
71 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
|
72 |
+
st.markdown(href, unsafe_allow_html=True)
|