first commit
Browse files- model2.pkl +3 -0
- preprocessing.pkl +3 -0
- requirements.txt +5 -0
- streamlit_app.py +58 -0
model2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fd47b1a0097fe8a96af6c32871937954156feda2b4f9c797b23da1a4b3c696a
|
3 |
+
size 444751
|
preprocessing.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:545b23fd00081f8a659fbb92e508eb672d69ba4e0f8436c27286c026ad7574f0
|
3 |
+
size 553156
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
pickle
|
4 |
+
requests
|
5 |
+
base64
|
streamlit_app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
import requests
|
5 |
+
import base64
|
6 |
+
|
7 |
+
@st.cache
|
8 |
+
def read_model(url):
|
9 |
+
response = requests.get(url)
|
10 |
+
open("temp.pkl", "wb").write(response.content)
|
11 |
+
with open("temp.pkl", "rb") as f:
|
12 |
+
svm_classifier = pickle.load(f)
|
13 |
+
return svm_classifier
|
14 |
+
|
15 |
+
|
16 |
+
def read_tf(url):
|
17 |
+
response = requests.get(url)
|
18 |
+
open("temp.pkl", "wb").write(response.content)
|
19 |
+
with open("temp.pkl", "rb") as f:
|
20 |
+
preprocessing = pickle.load(f)
|
21 |
+
return preprocessing
|
22 |
+
|
23 |
+
svm_classifier = read_model("https://github.com/manika-lamba/ml/raw/main/model2.pkl")
|
24 |
+
preprocessing = read_tf("https://github.com/manika-lamba/ml/raw/main/preprocessing.pkl")
|
25 |
+
|
26 |
+
# Function to predict the category for a given abstract
|
27 |
+
def predict_category(abstract):
|
28 |
+
# Preprocess the abstract
|
29 |
+
abstract_preprocessed = preprocessing.transform([abstract])
|
30 |
+
# Make prediction
|
31 |
+
prediction = svm_classifier.predict(abstract_preprocessed)
|
32 |
+
return prediction
|
33 |
+
|
34 |
+
# Create sidebar
|
35 |
+
|
36 |
+
# Create tab for choosing CSV file
|
37 |
+
st.sidebar.header("Choose CSV File with 'Abstract' field")
|
38 |
+
uploaded_file = st.sidebar.file_uploader("", type=["csv"])
|
39 |
+
|
40 |
+
if uploaded_file is not None:
|
41 |
+
df = pd.read_csv(uploaded_file, encoding='latin-1')
|
42 |
+
st.dataframe(df)
|
43 |
+
# Tag the "Abstract" column with the corresponding categories
|
44 |
+
df['category'] = df['Abstract'].apply(predict_category)
|
45 |
+
st.dataframe(df)
|
46 |
+
|
47 |
+
st.sidebar.header("Download Results")
|
48 |
+
st.sidebar.text("Download the tagged results as a CSV file.")
|
49 |
+
|
50 |
+
# Create a download button
|
51 |
+
if st.sidebar.button("Download"):
|
52 |
+
csv = df.to_csv(index=False)
|
53 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
54 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
|
55 |
+
st.markdown(href, unsafe_allow_html=True)
|
56 |
+
|
57 |
+
st.title("About")
|
58 |
+
st.subheader("You can tag your input CSV file of theses and dissertations with Library Science, Archival Studies, and Information Science categories. The screen will show the output.")
|