manika07 commited on
Commit
f125d78
·
1 Parent(s): 15d0a5e

added tabs

Browse files
Files changed (1) hide show
  1. app.py +22 -21
app.py CHANGED
@@ -6,25 +6,6 @@ import pickle
6
  import requests
7
  import base64
8
 
9
- @st.cache_data(ttl=3600)
10
- def read_model(url):
11
- response = requests.get(url)
12
- open("temp.pkl", "wb").write(response.content)
13
- with open("temp.pkl", "rb") as f:
14
- svm_classifier = pickle.load(f)
15
- return svm_classifier
16
-
17
-
18
- def read_tf(url):
19
- response = requests.get(url)
20
- open("temp.pkl", "wb").write(response.content)
21
- with open("temp.pkl", "rb") as f:
22
- preprocessing = pickle.load(f)
23
- return preprocessing
24
-
25
- svm_classifier = read_model("https://github.com/manika-lamba/ml/raw/main/model2.pkl")
26
- preprocessing = read_tf("https://github.com/manika-lamba/ml/raw/main/preprocessing.pkl")
27
-
28
 
29
 
30
  # Create sidebar
@@ -33,8 +14,7 @@ preprocessing = read_tf("https://github.com/manika-lamba/ml/raw/main/preprocessi
33
  st.sidebar.header("Choose CSV File with 'Abstract' field")
34
  uploaded_file = st.sidebar.file_uploader("", type=["csv"])
35
 
36
- st.sidebar.header("Download Results")
37
- st.sidebar.text("Download the tagged results as a CSV file.")
38
 
39
 
40
 
@@ -60,6 +40,25 @@ with tab2:
60
  st.dataframe(df)
61
 
62
  # Function to predict the category for a given abstract
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  def predict_category(abstract):
64
  # Preprocess the abstract
65
  abstract_preprocessed = preprocessing.transform([abstract])
@@ -70,6 +69,8 @@ def predict_category(abstract):
70
  with tab3:
71
  #===download result===
72
  # Create a download button
 
 
73
 
74
  if st.sidebar.button("Download"):
75
  csv = df.to_csv(index=False)
 
6
  import requests
7
  import base64
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
 
11
  # Create sidebar
 
14
  st.sidebar.header("Choose CSV File with 'Abstract' field")
15
  uploaded_file = st.sidebar.file_uploader("", type=["csv"])
16
 
17
+
 
18
 
19
 
20
 
 
40
  st.dataframe(df)
41
 
42
  # Function to predict the category for a given abstract
43
+ @st.cache_data(ttl=3600)
44
+ def read_model(url):
45
+ response = requests.get(url)
46
+ open("temp.pkl", "wb").write(response.content)
47
+ with open("temp.pkl", "rb") as f:
48
+ svm_classifier = pickle.load(f)
49
+ return svm_classifier
50
+
51
+
52
+ def read_tf(url):
53
+ response = requests.get(url)
54
+ open("temp.pkl", "wb").write(response.content)
55
+ with open("temp.pkl", "rb") as f:
56
+ preprocessing = pickle.load(f)
57
+ return preprocessing
58
+
59
+ svm_classifier = read_model("https://github.com/manika-lamba/ml/raw/main/model2.pkl")
60
+ preprocessing = read_tf("https://github.com/manika-lamba/ml/raw/main/preprocessing.pkl")
61
+
62
  def predict_category(abstract):
63
  # Preprocess the abstract
64
  abstract_preprocessed = preprocessing.transform([abstract])
 
69
  with tab3:
70
  #===download result===
71
  # Create a download button
72
+ st.sidebar.header("Download Results")
73
+ st.sidebar.text("Download the tagged results as a CSV file.")
74
 
75
  if st.sidebar.button("Download"):
76
  csv = df.to_csv(index=False)