Spaces:
Sleeping
Sleeping
Commit
·
3154606
1
Parent(s):
c0b808b
Update app.py to adapt to dataset structure
Browse files
app.py
CHANGED
@@ -9,14 +9,17 @@ import joblib
|
|
9 |
# Load the dataset
|
10 |
webtraffic_data = pd.read_csv("webtraffic.csv")
|
11 |
|
12 |
-
#
|
13 |
-
webtraffic_data
|
|
|
|
|
|
|
14 |
|
15 |
# Load the pre-trained models
|
16 |
sarima_model = joblib.load("sarima_model.pkl") # Load SARIMA model
|
17 |
lstm_model = tf.keras.models.load_model("lstm_model.keras") # Load LSTM model
|
18 |
|
19 |
-
# Load the scaler for LSTM if used during training
|
20 |
scaler = joblib.load("scaler.pkl")
|
21 |
|
22 |
# Function to generate predictions and plots
|
|
|
9 |
# Load the dataset
|
10 |
webtraffic_data = pd.read_csv("webtraffic.csv")
|
11 |
|
12 |
+
# Rename 'Hour Index' for easier use
|
13 |
+
webtraffic_data.rename(columns={"Hour Index": "Datetime"}, inplace=True)
|
14 |
+
|
15 |
+
# Create a datetime-like index for visualization purposes
|
16 |
+
webtraffic_data['Datetime'] = pd.to_datetime(webtraffic_data['Datetime'], unit='h', origin='unix')
|
17 |
|
18 |
# Load the pre-trained models
|
19 |
sarima_model = joblib.load("sarima_model.pkl") # Load SARIMA model
|
20 |
lstm_model = tf.keras.models.load_model("lstm_model.keras") # Load LSTM model
|
21 |
|
22 |
+
# Load the scaler for LSTM (if used during training)
|
23 |
scaler = joblib.load("scaler.pkl")
|
24 |
|
25 |
# Function to generate predictions and plots
|