Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,511 Bytes
2e721a4 aefd3bd 932a564 aefd3bd 932a564 d88077a 932a564 d88077a 932a564 340f8fa 932a564 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import spaces
import gradio as gr
import torch
import modin.pandas as pd
import numpy as np
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("mann-e/Mann-E_Dreams", torch_dtype=torch.float16)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
else:
pipe = DiffusionPipeline.from_pretrained("mann-e/Mann-E_Dreams", use_safetensors=True)
pipe = pipe.to(device)
@spaces.GPU
def genie (prompt, negative_prompt, steps, seed):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
int_image = pipe(prompt=prompt, negative_prompt=negative_prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0]
return int_image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 75 Token Limit.'),
gr.Textbox(label='What you DO NOT want the AI to generate. 75 Token Limit.'),
gr.Slider(1, maximum=8, value=6, step=1, label='Number of Iterations'),
gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True),
],
outputs='image',
title="Mann-E Dreams",
description="Mann-E Dreams <br><br><b>WARNING: This model is capable of producing NSFW (Softcore) images.</b>",
article = "").launch(debug=True, max_threads=80)
|