import spaces import gradio as gr import torch import modin.pandas as pd import numpy as np from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) torch.cuda.empty_cache() pipe = DiffusionPipeline.from_pretrained("mann-e/Mann-E_Dreams", torch_dtype=torch.float16) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) torch.cuda.empty_cache() else: pipe = DiffusionPipeline.from_pretrained("mann-e/Mann-E_Dreams", use_safetensors=True) pipe = pipe.to(device) @spaces.GPU def genie (prompt, negative_prompt, steps, seed): generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) int_image = pipe(prompt=prompt, negative_prompt=negative_prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0] return int_image gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 75 Token Limit.'), gr.Textbox(label='What you DO NOT want the AI to generate. 75 Token Limit.'), gr.Slider(1, maximum=8, value=6, step=1, label='Number of Iterations'), gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True), ], outputs='image', title="Mann-E Dreams", description="Mann-E Dreams

WARNING: This model is capable of producing NSFW (Softcore) images.", article = "").launch(debug=True, max_threads=80)