rag-ros2 / app.py
mannadamay12's picture
Update app.py
837e37f verified
raw
history blame
5.4 kB
import spaces
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
# System prompts
DEFAULT_SYSTEM_PROMPT = """
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers.
If the information is not in the context, respond with "I don't find that information in the available documentation."
Keep responses to 1-2 lines maximum.
""".strip()
# Pre-populated questions
PREDEFINED_QUESTIONS = [
"Select a question...",
"Tell me how can I navigate to a specific pose - include replanning aspects in your answer.",
"Can you provide me with code for this task?"
]
def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
Context: {context}
Question: {question}
Answer: [/INST]
""".strip()
# Initialize embeddings and database
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
def initialize_model():
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
device_map="cuda" if torch.cuda.is_available() else "cpu"
)
return model, tokenizer
def question_selected(question):
if question == "Select a question...":
return ""
return question
@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
model, tokenizer = initialize_model()
# Get context from database
retriever = db.as_retriever(search_kwargs={"k": 2})
docs = retriever.get_relevant_documents(message)
context = "\n".join([doc.page_content for doc in docs])
# Generate prompt
prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
# Set up the pipeline
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.15
)
# Generate response
output = text_pipeline(
prompt,
return_full_text=False,
max_new_tokens=max_tokens
)[0]['generated_text']
yield output.strip()
except Exception as e:
yield f"An error occurred: {str(e)}"
# Create the Gradio interface
with gr.Blocks(title="ROS2 Expert Assistant") as demo:
gr.Markdown("# ROS2 Expert Assistant")
gr.Markdown("Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.")
with gr.Row():
# Dropdown for predefined questions
question_dropdown = gr.Dropdown(
choices=PREDEFINED_QUESTIONS,
value="Select a question...",
label="Pre-defined Questions"
)
with gr.Row():
# Chat interface
chatbot = gr.Chatbot()
with gr.Row():
# Message input
msg = gr.Textbox(
label="Your Question",
placeholder="Type your question here or select one from the dropdown above...",
lines=2
)
with gr.Row():
submit = gr.Button("Submit")
clear = gr.Button("Clear")
with gr.Accordion("Advanced Settings", open=False):
system_message = gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Message",
lines=3
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
# Event handlers
question_dropdown.change(
question_selected,
inputs=[question_dropdown],
outputs=[msg]
)
submit.click(
respond,
inputs=[
msg,
chatbot,
system_message,
max_tokens,
temperature,
top_p
],
outputs=[chatbot]
)
clear.click(lambda: None, None, chatbot, queue=False)
msg.submit(
respond,
inputs=[
msg,
chatbot,
system_message,
max_tokens,
temperature,
top_p
],
outputs=[chatbot]
)
if __name__ == "__main__":
demo.launch(share=True)