Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,20 +3,25 @@ import torch
|
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
from huggingface_hub import InferenceClient
|
6 |
-
from
|
7 |
-
from
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Initialize
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
17 |
)
|
18 |
|
19 |
-
# Load
|
20 |
db = Chroma(
|
21 |
persist_directory="db",
|
22 |
embedding_function=embeddings
|
@@ -24,11 +29,31 @@ db = Chroma(
|
|
24 |
|
25 |
# Prompt templates
|
26 |
DEFAULT_SYSTEM_PROMPT = """
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
""".strip()
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def respond(
|
33 |
message,
|
34 |
history,
|
@@ -37,34 +62,28 @@ def respond(
|
|
37 |
temperature,
|
38 |
top_p,
|
39 |
):
|
|
|
40 |
try:
|
41 |
-
# Retrieve
|
42 |
docs = db.similarity_search(message, k=2)
|
43 |
context = "\n".join([doc.page_content for doc in docs])
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
if val[1]:
|
51 |
-
messages.append({"role": "assistant", "content": val[1]})
|
52 |
-
|
53 |
-
# Add context to the user message
|
54 |
-
augmented_message = f"Context: {context}\n\nQuestion: {message}"
|
55 |
-
messages.append({"role": "user", "content": augmented_message})
|
56 |
|
57 |
-
# Stream
|
58 |
response = ""
|
59 |
-
for message in client.
|
60 |
-
|
61 |
-
|
62 |
stream=True,
|
63 |
temperature=temperature,
|
64 |
top_p=top_p,
|
65 |
):
|
66 |
-
|
67 |
-
response += token
|
68 |
yield response
|
69 |
|
70 |
except Exception as e:
|
@@ -76,7 +95,9 @@ demo = gr.ChatInterface(
|
|
76 |
additional_inputs=[
|
77 |
gr.Textbox(
|
78 |
value=DEFAULT_SYSTEM_PROMPT,
|
79 |
-
label="System
|
|
|
|
|
80 |
),
|
81 |
gr.Slider(
|
82 |
minimum=1,
|
@@ -101,7 +122,7 @@ demo = gr.ChatInterface(
|
|
101 |
),
|
102 |
],
|
103 |
title="ROS2 Expert Assistant",
|
104 |
-
description="Ask questions about ROS2, navigation, and robotics. I'll
|
105 |
)
|
106 |
|
107 |
if __name__ == "__main__":
|
|
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
from huggingface_hub import InferenceClient
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
|
10 |
+
# Verify PyTorch version compatibility
|
11 |
+
TORCH_VERSION = torch.__version__
|
12 |
+
SUPPORTED_TORCH_VERSIONS = ['2.0.1', '2.1.2', '2.2.2', '2.4.0']
|
13 |
+
if TORCH_VERSION.rsplit('+')[0] not in SUPPORTED_TORCH_VERSIONS:
|
14 |
+
print(f"Warning: Current PyTorch version {TORCH_VERSION} may not be compatible with ZeroGPU. "
|
15 |
+
f"Supported versions are: {', '.join(SUPPORTED_TORCH_VERSIONS)}")
|
16 |
|
17 |
+
# Initialize components outside of GPU scope
|
18 |
+
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
|
19 |
+
embeddings = HuggingFaceEmbeddings(
|
20 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
21 |
+
model_kwargs={"device": "cpu"} # Keep embeddings on CPU
|
22 |
)
|
23 |
|
24 |
+
# Load database
|
25 |
db = Chroma(
|
26 |
persist_directory="db",
|
27 |
embedding_function=embeddings
|
|
|
29 |
|
30 |
# Prompt templates
|
31 |
DEFAULT_SYSTEM_PROMPT = """
|
32 |
+
Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context,
|
33 |
+
respond with "I don't know" or a similar acknowledgment that the answer is not available.
|
34 |
+
""".strip()
|
35 |
+
|
36 |
+
def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
|
37 |
+
return f"""
|
38 |
+
[INST] <<SYS>>
|
39 |
+
{system_prompt}
|
40 |
+
<</SYS>>
|
41 |
+
|
42 |
+
{prompt} [/INST]
|
43 |
""".strip()
|
44 |
|
45 |
+
template = generate_prompt(
|
46 |
+
"""
|
47 |
+
{context}
|
48 |
+
|
49 |
+
Question: {question}
|
50 |
+
""",
|
51 |
+
system_prompt="Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?"
|
52 |
+
)
|
53 |
+
|
54 |
+
prompt_template = PromptTemplate(template=template, input_variables=["context", "question"])
|
55 |
+
|
56 |
+
@spaces.GPU(duration=30) # Reduced duration for faster queue priority
|
57 |
def respond(
|
58 |
message,
|
59 |
history,
|
|
|
62 |
temperature,
|
63 |
top_p,
|
64 |
):
|
65 |
+
"""GPU-accelerated response generation"""
|
66 |
try:
|
67 |
+
# Retrieve context (CPU operation)
|
68 |
docs = db.similarity_search(message, k=2)
|
69 |
context = "\n".join([doc.page_content for doc in docs])
|
70 |
|
71 |
+
# Format prompt
|
72 |
+
formatted_prompt = prompt_template.format(
|
73 |
+
context=context,
|
74 |
+
question=message
|
75 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Stream response (GPU operation)
|
78 |
response = ""
|
79 |
+
for message in client.text_generation(
|
80 |
+
prompt=formatted_prompt,
|
81 |
+
max_new_tokens=max_tokens,
|
82 |
stream=True,
|
83 |
temperature=temperature,
|
84 |
top_p=top_p,
|
85 |
):
|
86 |
+
response += message
|
|
|
87 |
yield response
|
88 |
|
89 |
except Exception as e:
|
|
|
95 |
additional_inputs=[
|
96 |
gr.Textbox(
|
97 |
value=DEFAULT_SYSTEM_PROMPT,
|
98 |
+
label="System Message",
|
99 |
+
lines=3,
|
100 |
+
visible=False
|
101 |
),
|
102 |
gr.Slider(
|
103 |
minimum=1,
|
|
|
122 |
),
|
123 |
],
|
124 |
title="ROS2 Expert Assistant",
|
125 |
+
description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
|
126 |
)
|
127 |
|
128 |
if __name__ == "__main__":
|