Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
11 |
from langchain.vectorstores import Chroma
|
12 |
from langchain.prompts import PromptTemplate
|
@@ -18,25 +21,39 @@ DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
18 |
model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
19 |
|
20 |
# Remove the spaces.GPU decorator since we'll handle GPU directly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def initialize_model():
|
22 |
-
|
23 |
-
|
24 |
-
bnb_4bit_use_double_quant=True,
|
25 |
-
bnb_4bit_quant_type="nf4",
|
26 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
27 |
-
)
|
28 |
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
model_id,
|
32 |
-
token=
|
33 |
-
|
34 |
-
device_map="auto" if torch.cuda.is_available() else "cpu",
|
35 |
-
torch_dtype=torch.float32 if not torch.cuda.is_available() else None
|
36 |
)
|
37 |
|
38 |
return model, tokenizer
|
39 |
-
|
|
|
40 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
41 |
try:
|
42 |
model, tokenizer = initialize_model()
|
|
|
1 |
import os
|
2 |
+
import spaces
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
# import torch
|
6 |
+
# from transformers import (
|
7 |
+
# AutoTokenizer,
|
8 |
+
# TextStreamer,
|
9 |
+
# pipeline,
|
10 |
+
# BitsAndBytesConfig,
|
11 |
+
# AutoModelForCausalLM
|
12 |
+
# )
|
13 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
14 |
from langchain.vectorstores import Chroma
|
15 |
from langchain.prompts import PromptTemplate
|
|
|
21 |
model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
22 |
|
23 |
# Remove the spaces.GPU decorator since we'll handle GPU directly
|
24 |
+
# def initialize_model():
|
25 |
+
# bnb_config = BitsAndBytesConfig(
|
26 |
+
# load_in_4bit=True,
|
27 |
+
# bnb_4bit_use_double_quant=True,
|
28 |
+
# bnb_4bit_quant_type="nf4",
|
29 |
+
# bnb_4bit_compute_dtype=torch.bfloat16
|
30 |
+
# )
|
31 |
+
|
32 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ.get("HF_TOKEN"))
|
33 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
# model_id,
|
35 |
+
# token=os.environ.get("HF_TOKEN"),
|
36 |
+
# quantization_config=bnb_config if torch.cuda.is_available() else None,
|
37 |
+
# device_map="auto" if torch.cuda.is_available() else "cpu",
|
38 |
+
# torch_dtype=torch.float32 if not torch.cuda.is_available() else None
|
39 |
+
# )
|
40 |
+
|
41 |
+
# return model, tokenizer
|
42 |
+
|
43 |
def initialize_model():
|
44 |
+
model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
45 |
+
token = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
48 |
model = AutoModelForCausalLM.from_pretrained(
|
49 |
model_id,
|
50 |
+
token=token,
|
51 |
+
device_map="auto" # This works better with ZeroGPU
|
|
|
|
|
52 |
)
|
53 |
|
54 |
return model, tokenizer
|
55 |
+
|
56 |
+
@spaces.GPU
|
57 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
58 |
try:
|
59 |
model, tokenizer = initialize_model()
|