mannadamay12 commited on
Commit
d30c02a
·
verified ·
1 Parent(s): 59deb3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -38
app.py CHANGED
@@ -1,64 +1,108 @@
 
 
1
  import gradio as gr
 
2
  from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
9
 
 
 
 
 
 
 
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
  system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  gr.Slider(
53
  minimum=0.1,
54
  maximum=1.0,
55
  value=0.95,
56
  step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ import torch
3
  import gradio as gr
4
+ import spaces
5
  from huggingface_hub import InferenceClient
6
+ from langchain_community.embeddings import HuggingFaceInstructEmbeddings
7
+ from langchain_community.vectorstores import Chroma
8
+ from langchain.prompts import PromptTemplate
9
 
10
+ # Configure ZeroGPU client
11
+ client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
 
 
12
 
13
+ # Initialize embeddings
14
+ embeddings = HuggingFaceInstructEmbeddings(
15
+ model_name="hkunlp/instructor-base",
16
+ model_kwargs={"device": "cpu"} # Use CPU for Spaces
17
+ )
18
+
19
+ # Load the persisted database
20
+ db = Chroma(
21
+ persist_directory="db",
22
+ embedding_function=embeddings
23
+ )
24
 
25
+ # Prompt templates
26
+ DEFAULT_SYSTEM_PROMPT = """
27
+ You are a ROS2 expert assistant. Based on the information provided in the context, answer questions
28
+ accurately and concisely. If the information is not in the context, acknowledge that you don't know.
29
+ """.strip()
30
+
31
+ @spaces.GPU(duration=60)
32
  def respond(
33
  message,
34
+ history,
35
  system_message,
36
  max_tokens,
37
  temperature,
38
  top_p,
39
  ):
40
+ try:
41
+ # Retrieve relevant context
42
+ docs = db.similarity_search(message, k=2)
43
+ context = "\n".join([doc.page_content for doc in docs])
44
+
45
+ # Build messages
46
+ messages = [{"role": "system", "content": system_message}]
47
+ for val in history:
48
+ if val[0]:
49
+ messages.append({"role": "user", "content": val[0]})
50
+ if val[1]:
51
+ messages.append({"role": "assistant", "content": val[1]})
52
+
53
+ # Add context to the user message
54
+ augmented_message = f"Context: {context}\n\nQuestion: {message}"
55
+ messages.append({"role": "user", "content": augmented_message})
56
+
57
+ # Stream the response
58
+ response = ""
59
+ for message in client.chat_completion(
60
+ messages,
61
+ max_tokens=max_tokens,
62
+ stream=True,
63
+ temperature=temperature,
64
+ top_p=top_p,
65
+ ):
66
+ token = message.choices[0].delta.content
67
+ response += token
68
+ yield response
69
+
70
+ except Exception as e:
71
+ yield f"An error occurred: {str(e)}"
72
 
73
+ # Create Gradio interface
 
 
 
74
  demo = gr.ChatInterface(
75
  respond,
76
  additional_inputs=[
77
+ gr.Textbox(
78
+ value=DEFAULT_SYSTEM_PROMPT,
79
+ label="System message"
80
+ ),
81
+ gr.Slider(
82
+ minimum=1,
83
+ maximum=2048,
84
+ value=500,
85
+ step=1,
86
+ label="Max new tokens"
87
+ ),
88
+ gr.Slider(
89
+ minimum=0.1,
90
+ maximum=4.0,
91
+ value=0.1,
92
+ step=0.1,
93
+ label="Temperature"
94
+ ),
95
  gr.Slider(
96
  minimum=0.1,
97
  maximum=1.0,
98
  value=0.95,
99
  step=0.05,
100
+ label="Top-p (nucleus sampling)"
101
  ),
102
  ],
103
+ title="ROS2 Expert Assistant",
104
+ description="Ask questions about ROS2, navigation, and robotics. I'll answer based on my knowledge base.",
105
  )
106
 
 
107
  if __name__ == "__main__":
108
+ demo.launch()