Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,12 @@ from langchain.prompts import PromptTemplate
|
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain_community.llms import HuggingFacePipeline
|
11 |
|
12 |
-
# System prompts
|
13 |
DEFAULT_SYSTEM_PROMPT = """
|
14 |
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers.
|
15 |
If the information is not in the context, respond with "I don't find that information in the available documentation."
|
16 |
Keep responses to 1-2 lines maximum.
|
17 |
""".strip()
|
18 |
|
19 |
-
# Expanded pre-populated questions
|
20 |
PREDEFINED_QUESTIONS = [
|
21 |
"Select a question...",
|
22 |
"Tell me how can I navigate to a specific pose - include replanning aspects in your answer.",
|
@@ -26,13 +24,6 @@ PREDEFINED_QUESTIONS = [
|
|
26 |
"How do I integrate custom recovery behaviors?"
|
27 |
]
|
28 |
|
29 |
-
# Helper text for tooltip
|
30 |
-
DROPDOWN_TOOLTIP = """
|
31 |
-
You can either:
|
32 |
-
• Select a predefined question from this dropdown
|
33 |
-
• Type your own question in the text box below
|
34 |
-
"""
|
35 |
-
|
36 |
def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
|
37 |
return f"""
|
38 |
[INST] <<SYS>>
|
@@ -43,7 +34,6 @@ Question: {question}
|
|
43 |
Answer: [/INST]
|
44 |
""".strip()
|
45 |
|
46 |
-
# Initialize embeddings and database
|
47 |
embeddings = HuggingFaceInstructEmbeddings(
|
48 |
model_name="hkunlp/instructor-base",
|
49 |
model_kwargs={"device": "cpu"}
|
@@ -75,7 +65,6 @@ def question_selected(question):
|
|
75 |
@spaces.GPU
|
76 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
77 |
try:
|
78 |
-
# Initialize chat history if None
|
79 |
history = history or []
|
80 |
|
81 |
if not message.strip():
|
@@ -84,15 +73,12 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
84 |
|
85 |
model, tokenizer = initialize_model()
|
86 |
|
87 |
-
# Get context from database
|
88 |
retriever = db.as_retriever(search_kwargs={"k": 2})
|
89 |
docs = retriever.get_relevant_documents(message)
|
90 |
context = "\n".join([doc.page_content for doc in docs])
|
91 |
|
92 |
-
# Generate prompt
|
93 |
prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
|
94 |
|
95 |
-
# Set up the pipeline
|
96 |
text_pipeline = pipeline(
|
97 |
"text-generation",
|
98 |
model=model,
|
@@ -103,56 +89,40 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
103 |
repetition_penalty=1.15
|
104 |
)
|
105 |
|
106 |
-
# Generate response
|
107 |
output = text_pipeline(
|
108 |
prompt,
|
109 |
return_full_text=False,
|
110 |
max_new_tokens=max_tokens
|
111 |
)[0]['generated_text']
|
112 |
|
113 |
-
# Add the new exchange to history
|
114 |
history.append((message, output.strip()))
|
115 |
-
|
116 |
return history
|
117 |
|
118 |
except Exception as e:
|
119 |
history.append((message, f"An error occurred: {str(e)}"))
|
120 |
return history
|
121 |
|
122 |
-
def
|
123 |
-
|
|
|
124 |
|
125 |
-
# Create the Gradio interface
|
126 |
with gr.Blocks(title="ROS2 Expert Assistant") as demo:
|
127 |
gr.Markdown("# ROS2 Expert Assistant")
|
128 |
gr.Markdown("Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.")
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
value="Select a question...",
|
136 |
-
label="Pre-defined Questions"
|
137 |
-
)
|
138 |
-
with gr.Column(scale=1):
|
139 |
-
# Info icon with tooltip
|
140 |
-
gr.Markdown(
|
141 |
-
"""<div title="{}">ℹ️</div>""".format(DROPDOWN_TOOLTIP),
|
142 |
-
elem_classes=["tooltip"]
|
143 |
-
)
|
144 |
|
145 |
-
|
146 |
-
# Chat interface
|
147 |
-
chatbot = gr.Chatbot()
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
lines=2
|
155 |
-
)
|
156 |
|
157 |
with gr.Row():
|
158 |
submit = gr.Button("Submit")
|
@@ -186,55 +156,24 @@ with gr.Blocks(title="ROS2 Expert Assistant") as demo:
|
|
186 |
label="Top-p"
|
187 |
)
|
188 |
|
189 |
-
# Add custom CSS for tooltip
|
190 |
-
gr.Markdown("""
|
191 |
-
<style>
|
192 |
-
.tooltip {
|
193 |
-
cursor: help;
|
194 |
-
font-size: 1.2em;
|
195 |
-
}
|
196 |
-
</style>
|
197 |
-
""")
|
198 |
-
|
199 |
-
# Event handlers
|
200 |
question_dropdown.change(
|
201 |
question_selected,
|
202 |
inputs=[question_dropdown],
|
203 |
outputs=[msg]
|
204 |
)
|
205 |
|
206 |
-
def submit_and_clear(message, history, system_message, max_tokens, temperature, top_p):
|
207 |
-
# First get the response
|
208 |
-
new_history = respond(message, history, system_message, max_tokens, temperature, top_p)
|
209 |
-
# Then clear the input
|
210 |
-
return new_history, gr.Textbox.update(value="")
|
211 |
-
|
212 |
submit.click(
|
213 |
submit_and_clear,
|
214 |
-
inputs=[
|
215 |
-
msg,
|
216 |
-
chatbot,
|
217 |
-
system_message,
|
218 |
-
max_tokens,
|
219 |
-
temperature,
|
220 |
-
top_p
|
221 |
-
],
|
222 |
outputs=[chatbot, msg]
|
223 |
)
|
224 |
|
225 |
clear.click(lambda: (None, ""), None, [chatbot, msg], queue=False)
|
226 |
msg.submit(
|
227 |
submit_and_clear,
|
228 |
-
inputs=[
|
229 |
-
msg,
|
230 |
-
chatbot,
|
231 |
-
system_message,
|
232 |
-
max_tokens,
|
233 |
-
temperature,
|
234 |
-
top_p
|
235 |
-
],
|
236 |
outputs=[chatbot, msg]
|
237 |
)
|
238 |
|
239 |
if __name__ == "__main__":
|
240 |
-
demo.launch(
|
|
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain_community.llms import HuggingFacePipeline
|
11 |
|
|
|
12 |
DEFAULT_SYSTEM_PROMPT = """
|
13 |
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers.
|
14 |
If the information is not in the context, respond with "I don't find that information in the available documentation."
|
15 |
Keep responses to 1-2 lines maximum.
|
16 |
""".strip()
|
17 |
|
|
|
18 |
PREDEFINED_QUESTIONS = [
|
19 |
"Select a question...",
|
20 |
"Tell me how can I navigate to a specific pose - include replanning aspects in your answer.",
|
|
|
24 |
"How do I integrate custom recovery behaviors?"
|
25 |
]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
|
28 |
return f"""
|
29 |
[INST] <<SYS>>
|
|
|
34 |
Answer: [/INST]
|
35 |
""".strip()
|
36 |
|
|
|
37 |
embeddings = HuggingFaceInstructEmbeddings(
|
38 |
model_name="hkunlp/instructor-base",
|
39 |
model_kwargs={"device": "cpu"}
|
|
|
65 |
@spaces.GPU
|
66 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
67 |
try:
|
|
|
68 |
history = history or []
|
69 |
|
70 |
if not message.strip():
|
|
|
73 |
|
74 |
model, tokenizer = initialize_model()
|
75 |
|
|
|
76 |
retriever = db.as_retriever(search_kwargs={"k": 2})
|
77 |
docs = retriever.get_relevant_documents(message)
|
78 |
context = "\n".join([doc.page_content for doc in docs])
|
79 |
|
|
|
80 |
prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
|
81 |
|
|
|
82 |
text_pipeline = pipeline(
|
83 |
"text-generation",
|
84 |
model=model,
|
|
|
89 |
repetition_penalty=1.15
|
90 |
)
|
91 |
|
|
|
92 |
output = text_pipeline(
|
93 |
prompt,
|
94 |
return_full_text=False,
|
95 |
max_new_tokens=max_tokens
|
96 |
)[0]['generated_text']
|
97 |
|
|
|
98 |
history.append((message, output.strip()))
|
|
|
99 |
return history
|
100 |
|
101 |
except Exception as e:
|
102 |
history.append((message, f"An error occurred: {str(e)}"))
|
103 |
return history
|
104 |
|
105 |
+
def submit_and_clear(message, history, system_message, max_tokens, temperature, top_p):
|
106 |
+
new_history = respond(message, history, system_message, max_tokens, temperature, top_p)
|
107 |
+
return new_history, gr.Textbox.update(value="")
|
108 |
|
|
|
109 |
with gr.Blocks(title="ROS2 Expert Assistant") as demo:
|
110 |
gr.Markdown("# ROS2 Expert Assistant")
|
111 |
gr.Markdown("Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.")
|
112 |
|
113 |
+
question_dropdown = gr.Dropdown(
|
114 |
+
choices=PREDEFINED_QUESTIONS,
|
115 |
+
value="Select a question...",
|
116 |
+
label="Pre-defined Questions"
|
117 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
chatbot = gr.Chatbot()
|
|
|
|
|
120 |
|
121 |
+
msg = gr.Textbox(
|
122 |
+
label="Your Question",
|
123 |
+
placeholder="Type your question here or select one from the dropdown above...",
|
124 |
+
lines=2
|
125 |
+
)
|
|
|
|
|
126 |
|
127 |
with gr.Row():
|
128 |
submit = gr.Button("Submit")
|
|
|
156 |
label="Top-p"
|
157 |
)
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
question_dropdown.change(
|
160 |
question_selected,
|
161 |
inputs=[question_dropdown],
|
162 |
outputs=[msg]
|
163 |
)
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
submit.click(
|
166 |
submit_and_clear,
|
167 |
+
inputs=[msg, chatbot, system_message, max_tokens, temperature, top_p],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
outputs=[chatbot, msg]
|
169 |
)
|
170 |
|
171 |
clear.click(lambda: (None, ""), None, [chatbot, msg], queue=False)
|
172 |
msg.submit(
|
173 |
submit_and_clear,
|
174 |
+
inputs=[msg, chatbot, system_message, max_tokens, temperature, top_p],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
outputs=[chatbot, msg]
|
176 |
)
|
177 |
|
178 |
if __name__ == "__main__":
|
179 |
+
demo.launch()
|