import os import torch import gradio as gr import spaces from huggingface_hub import InferenceClient from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.prompts import PromptTemplate # Verify PyTorch version compatibility TORCH_VERSION = torch.__version__ SUPPORTED_TORCH_VERSIONS = ['2.0.1', '2.1.2', '2.2.2', '2.4.0'] if TORCH_VERSION.rsplit('+')[0] not in SUPPORTED_TORCH_VERSIONS: print(f"Warning: Current PyTorch version {TORCH_VERSION} may not be compatible with ZeroGPU. " f"Supported versions are: {', '.join(SUPPORTED_TORCH_VERSIONS)}") # Initialize components outside of GPU scope client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"} # Keep embeddings on CPU ) # Load database db = Chroma( persist_directory="db", embedding_function=embeddings ) # Prompt templates DEFAULT_SYSTEM_PROMPT = """ Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context, respond with "I don't know" or a similar acknowledgment that the answer is not available. """.strip() def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: return f""" [INST] <> {system_prompt} <> {prompt} [/INST] """.strip() template = generate_prompt( """ {context} Question: {question} """, system_prompt="Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?" ) prompt_template = PromptTemplate(template=template, input_variables=["context", "question"]) @spaces.GPU(duration=30) # Reduced duration for faster queue priority def respond( message, history, system_message, max_tokens, temperature, top_p, ): """GPU-accelerated response generation""" try: # Retrieve context (CPU operation) docs = db.similarity_search(message, k=2) context = "\n".join([doc.page_content for doc in docs]) print(f"Retrieved context: {context[:200]}...") # Format prompt formatted_prompt = prompt_template.format( context=context, question=message ) print(f"Full prompt: {formatted_prompt}") # Stream response (GPU operation) response = "" for message in client.text_generation( prompt=formatted_prompt, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): response += message yield response except Exception as e: yield f"An error occurred: {str(e)}" # Create Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value=DEFAULT_SYSTEM_PROMPT, label="System Message", lines=3, visible=False ), gr.Slider( minimum=1, maximum=2048, value=500, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], title="ROS2 Expert Assistant", description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.", ) if __name__ == "__main__": demo.launch()