import os import torch import gradio as gr import spaces from huggingface_hub import InferenceClient from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_community.vectorstores import Chroma from langchain.prompts import PromptTemplate # Configure ZeroGPU client client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") # Initialize embeddings embeddings = HuggingFaceInstructEmbeddings( model_name="hkunlp/instructor-base", model_kwargs={"device": "cpu"} # Use CPU for Spaces ) # Load the persisted database db = Chroma( persist_directory="db", embedding_function=embeddings ) # Prompt templates DEFAULT_SYSTEM_PROMPT = """ You are a ROS2 expert assistant. Based on the information provided in the context, answer questions accurately and concisely. If the information is not in the context, acknowledge that you don't know. """.strip() @spaces.GPU(duration=60) def respond( message, history, system_message, max_tokens, temperature, top_p, ): try: # Retrieve relevant context docs = db.similarity_search(message, k=2) context = "\n".join([doc.page_content for doc in docs]) # Build messages messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add context to the user message augmented_message = f"Context: {context}\n\nQuestion: {message}" messages.append({"role": "user", "content": augmented_message}) # Stream the response response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"An error occurred: {str(e)}" # Create Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value=DEFAULT_SYSTEM_PROMPT, label="System message" ), gr.Slider( minimum=1, maximum=2048, value=500, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], title="ROS2 Expert Assistant", description="Ask questions about ROS2, navigation, and robotics. I'll answer based on my knowledge base.", ) if __name__ == "__main__": demo.launch()