manozSameer commited on
Commit
3327b8f
·
verified ·
1 Parent(s): d462ad4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Load the CogVideoX model and tokenizer
6
+ @st.cache_resource
7
+ def load_model():
8
+ model_name = "THUDM/CogVideoX-5b"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForCausalLM.from_pretrained(model_name)
11
+ return tokenizer, model
12
+
13
+ tokenizer, model = load_model()
14
+
15
+ # Streamlit interface
16
+ st.title("Text to Video Generator using CogVideoX-5b")
17
+
18
+ # Input text prompt from user
19
+ prompt = st.text_input("Enter a text prompt for video generation:", "")
20
+
21
+ # Button to generate the video
22
+ if st.button("Generate Video"):
23
+ if prompt:
24
+ with st.spinner("Generating video..."):
25
+ inputs = tokenizer(prompt, return_tensors="pt")
26
+ output = model.generate(**inputs)
27
+
28
+ # Assuming video output is a tensor; simulate video path
29
+ video_path = "generated_video.mp4"
30
+ with open(video_path, "wb") as f:
31
+ f.write(output[0].cpu().numpy()) # Example write operation (modify this as per the actual model's output)
32
+
33
+ st.video(video_path)
34
+ else:
35
+ st.warning("Please enter a prompt before generating the video.")
36
+
37
+ # Footer
38
+ st.write("Powered by THUDM/CogVideoX-5b and Streamlit")