mansesa3 commited on
Commit
492bb50
·
verified ·
1 Parent(s): 7e6a158

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -12,7 +12,7 @@ def predict_flower(image):
12
  # Preprocess image
13
  image = image.resize((150, 150)) # Resize the image to 150x150
14
  image = image.convert('RGB') # Ensure image has 3 channels
15
- image = np.array(image)
16
  image = np.expand_dims(image, axis=0) # Add batch dimension
17
 
18
  # Predict
@@ -22,7 +22,7 @@ def predict_flower(image):
22
  probabilities = tf.nn.softmax(prediction, axis=1)
23
 
24
  # Map probabilities to Flower classes
25
- class_names = ['daisy', 'dandelion', 'rose','sunflower','tulip']
26
  probabilities_dict = {flower_class: round(float(probability), 2) for flower_class, probability in zip(class_names, probabilities.numpy()[0])}
27
 
28
  return probabilities_dict
@@ -42,9 +42,14 @@ if uploaded_image is not None:
42
 
43
  predictions = predict_flower(image)
44
 
 
 
 
 
 
45
  # Find the flower with the highest probability
46
  highest_probability_flower = max(predictions, key=predictions.get)
47
  highest_probability_value = predictions[highest_probability_flower]
48
 
49
  # Display the flower with the highest probability
50
- st.write(f"Es ist eine: **{highest_probability_flower}** .")
 
12
  # Preprocess image
13
  image = image.resize((150, 150)) # Resize the image to 150x150
14
  image = image.convert('RGB') # Ensure image has 3 channels
15
+ image = np.array(image) / 255.0 # Normalize the image to [0, 1]
16
  image = np.expand_dims(image, axis=0) # Add batch dimension
17
 
18
  # Predict
 
22
  probabilities = tf.nn.softmax(prediction, axis=1)
23
 
24
  # Map probabilities to Flower classes
25
+ class_names = ['daisy', 'dandelion', 'rose', 'sunflower', 'tulip']
26
  probabilities_dict = {flower_class: round(float(probability), 2) for flower_class, probability in zip(class_names, probabilities.numpy()[0])}
27
 
28
  return probabilities_dict
 
42
 
43
  predictions = predict_flower(image)
44
 
45
+ # Log the predictions
46
+ st.write("Vorhersagen für jede Klasse:")
47
+ for flower_class, probability in predictions.items():
48
+ st.write(f"{flower_class}: {probability}")
49
+
50
  # Find the flower with the highest probability
51
  highest_probability_flower = max(predictions, key=predictions.get)
52
  highest_probability_value = predictions[highest_probability_flower]
53
 
54
  # Display the flower with the highest probability
55
+ st.write(f"Es ist eine: **{highest_probability_flower}** mit einer Wahrscheinlichkeit von {highest_probability_value} .")