mansesa3 commited on
Commit
f794c70
·
verified ·
1 Parent(s): 959c122

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+ import pandas as pd
6
+ import matplotlib.pyplot as plt
7
+
8
+ # Load the trained model
9
+ model_path = "flower-model.keras"
10
+ model = tf.keras.models.load_model(model_path)
11
+
12
+ # Define the core prediction function
13
+ def predict_flower(image):
14
+ # Preprocess image
15
+ image = image.resize((150, 150)) # Resize the image to 150x150
16
+ image = image.convert('RGB') # Ensure image has 3 channels
17
+ image = np.array(image)
18
+ image = np.expand_dims(image, axis=0) # Add batch dimension
19
+
20
+ # Predict
21
+ prediction = model.predict(image)
22
+
23
+ # Apply softmax to get probabilities for each class
24
+ probabilities = tf.nn.softmax(prediction, axis=1)
25
+
26
+ # Map probabilities to Flower classes
27
+ class_names = ['daisy', 'dandelion', 'rose','sunflower','tulip']
28
+ probabilities_dict = {flower_class: round(float(probability), 2) for flower_class, probability in zip(class_names, probabilities.numpy()[0])}
29
+
30
+ return probabilities_dict
31
+
32
+ # Streamlit interface
33
+ st.title("Bluemen erkenner")
34
+ st.write("Welche Blume wächst in ihrem Garten?")
35
+
36
+ # Upload image
37
+ uploaded_image = st.file_uploader("Lade dein Bild hoch...", type=["jpg", "png"])
38
+
39
+ if uploaded_image is not None:
40
+ image = Image.open(uploaded_image)
41
+ st.image(image, caption='Uploaded Image.', use_column_width=True)
42
+ st.write("")
43
+ st.write("Identifiezieren...")
44
+
45
+ predictions = predict_flower(image)
46
+
47
+ # Display predictions as a DataFrame
48
+ st.write("### Prediction Probabilities")
49
+ df = pd.DataFrame(predictions.items(), columns=["Flower", "Probability"])
50
+ st.dataframe(df)
51
+
52
+
53
+ # Example images
54
+ st.sidebar.title("Examples")
55
+ example_images = ["Blume/rose.png", "Blume/sunflower.png", "Blume/dandelion.png"]
56
+ for example_image in example_images:
57
+ st.sidebar.image(example_image, use_column_width=True)