mansesa3 commited on
Commit
3529fc7
·
verified ·
1 Parent(s): 0faa6df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -198
app.py CHANGED
@@ -1,202 +1,29 @@
1
- # %%
2
- import os
3
- os.environ['KMP_DUPLICATE_LIB_OK']= 'True'
4
-
5
  import tensorflow as tf
6
- tf.__version__
7
-
8
- # %%
9
-
10
- import matplotlib.pyplot as plt
11
  import numpy as np
12
-
13
-
14
- # %%
15
- # Set the paths to your dataset directories
16
- train_dir = r'pokemon/train'
17
- val_dir = r'pokemon/val'
18
-
19
- # Ensure the paths are correctly formatted
20
- train_dir = os.path.normpath(train_dir)
21
- val_dir = os.path.normpath(val_dir)
22
-
23
- # Load the datasets
24
- train_ds = tf.keras.utils.image_dataset_from_directory(
25
- directory=train_dir,
26
- labels='inferred',
27
- label_mode='int', # Use 'int' for sparse_categorical_crossentropy loss
28
- batch_size=12,
29
- image_size=(150, 150))
30
-
31
- validation_ds = tf.keras.utils.image_dataset_from_directory(
32
- directory=val_dir,
33
- labels='inferred',
34
- label_mode='int',
35
- batch_size=12,
36
- image_size=(150, 150))
37
-
38
- # %%
39
- val_batches = tf.data.experimental.cardinality(validation_ds)
40
- test_ds = validation_ds.take(val_batches // 5)
41
- validation_ds = validation_ds.skip(val_batches // 5)
42
-
43
- # %%
44
- print('Number of training batches: %d' % tf.data.experimental.cardinality(train_ds))
45
- print('Number of validation batches: %d' % tf.data.experimental.cardinality(validation_ds))
46
- print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
47
-
48
- # %%
49
- class_names = train_ds.class_names
50
-
51
- plt.figure(figsize=(10, 10))
52
- for images, labels in train_ds.take(1):
53
- for i in range(9):
54
- ax = plt.subplot(3, 3, i + 1)
55
- plt.imshow(images[i].numpy().astype("uint8"))
56
- plt.title(class_names[labels[i]])
57
- plt.axis("off")
58
-
59
- # %%
60
- number_of_classes = len(train_ds.class_names)
61
- print(number_of_classes)
62
- print(class_names)
63
-
64
- # %%
65
- #resize 150x150?
66
- resize_fn = tf.keras.layers.Resizing(150, 150)
67
-
68
- train_ds = train_ds.map(lambda x, y: (resize_fn(x), y))
69
- validation_ds = validation_ds.map(lambda x, y: (resize_fn(x), y))
70
- test_ds = test_ds.map(lambda x, y: (resize_fn(x), y))
71
-
72
- # %%
73
-
74
- # Build the model
75
- base_model = tf.keras.applications.Xception(
76
- weights="imagenet", # Load weights pre-trained on ImageNet.
77
- input_shape=(150, 150, 3),
78
- include_top=False,
79
- ) # Do not include the ImageNet classifier at the top.
80
-
81
- # Freeze the base_model
82
- base_model.trainable = False
83
-
84
- # Create new model on top
85
- inputs = tf.keras.Input(shape=(150, 150, 3))
86
-
87
- # Pre-trained Xception weights require that input be scaled
88
- # from (0, 255) to a range of (-1., +1.), the rescaling layer
89
- # outputs: `(inputs * scale) + offset`
90
- scale_layer = tf.keras.layers.Rescaling(scale=1 / 127.5, offset=-1)
91
- x = scale_layer(inputs)
92
-
93
- # The base model contains batchnorm layers. We want to keep them in inference mode
94
- # when we unfreeze the base model for fine-tuning, so we make sure that the
95
- # base_model is running in inference mode here.
96
- x = base_model(x, training=False)
97
- x = tf.keras.layers.GlobalAveragePooling2D()(x)
98
- x = tf.keras.layers.Dropout(0.2)(x) # Regularize with dropout
99
- outputs = tf.keras.layers.Dense(number_of_classes, activation="softmax")(x)
100
- model = tf.keras.Model(inputs, outputs)
101
-
102
- model.summary(show_trainable=True)
103
-
104
-
105
- # %%
106
- model.compile(optimizer=tf.keras.optimizers.Adam(),
107
- loss="sparse_categorical_crossentropy",
108
- metrics=['accuracy'])
109
-
110
- initial_epochs = 4
111
- print("Fitting the top layer of the model")
112
- history = model.fit(train_ds, epochs=initial_epochs, validation_data=validation_ds)
113
-
114
-
115
- # %%
116
- acc = history.history['accuracy']
117
- val_acc = history.history['val_accuracy']
118
-
119
- loss = history.history['loss']
120
- val_loss = history.history['val_loss']
121
-
122
- plt.figure(figsize=(8, 8))
123
- plt.subplot(2, 1, 1)
124
- plt.plot(acc, label='Training Accuracy')
125
- plt.plot(val_acc, label='Validation Accuracy')
126
- plt.legend(loc='lower right')
127
- plt.ylabel('Accuracy')
128
- plt.ylim([min(plt.ylim()),1])
129
- plt.title('Training and Validation Accuracy')
130
-
131
- plt.subplot(2, 1, 2)
132
- plt.plot(loss, label='Training Loss')
133
- plt.plot(val_loss, label='Validation Loss')
134
- plt.legend(loc='upper right')
135
- plt.ylabel('Cross Entropy')
136
- plt.title('Training and Validation Loss')
137
- plt.xlabel('epoch')
138
- plt.show()
139
-
140
- # %%
141
- base_model.trainable = True
142
- model.summary(show_trainable=True)
143
-
144
- model.compile(
145
- optimizer=tf.keras.optimizers.Adam(1e-5), # Low learning rate
146
- loss="sparse_categorical_crossentropy",
147
- metrics=['accuracy']
148
  )
149
 
150
- epochs = 1
151
- print("Fitting the end-to-end model")
152
- history_fine = model.fit(train_ds, epochs=epochs, validation_data=validation_ds)
153
-
154
-
155
- # %%
156
- acc += history_fine.history['accuracy']
157
- val_acc += history_fine.history['val_accuracy']
158
-
159
- loss += history_fine.history['loss']
160
- val_loss += history_fine.history['val_loss']
161
-
162
- plt.figure(figsize=(8, 8))
163
- plt.subplot(2, 1, 1)
164
- plt.plot(acc, label='Training Accuracy')
165
- plt.plot(val_acc, label='Validation Accuracy')
166
- plt.ylim([0.4, 1]) # set the y-axis limits
167
- plt.plot([initial_epochs-1,initial_epochs-1],
168
- plt.ylim(), label='Start Fine Tuning')
169
- plt.legend(loc='lower right')
170
- plt.title('Training and Validation Accuracy')
171
-
172
- plt.subplot(2, 1, 2)
173
- plt.plot(loss, label='Training Loss')
174
- plt.plot(val_loss, label='Validation Loss')
175
- plt.plot([initial_epochs-1,initial_epochs-1],
176
- plt.ylim(), label='Start Fine Tuning')
177
- plt.legend(loc='upper right')
178
- plt.title('Training and Validation Loss')
179
- plt.xlabel('epoch')
180
- plt.show()
181
-
182
- # %%
183
- print("Test dataset evaluation")
184
- model.evaluate(test_ds)
185
-
186
- # %%
187
- image_batch, label_batch = test_ds.as_numpy_iterator().next()
188
- predictions_in_percentage = model.predict_on_batch(image_batch)
189
- predictions = np.argmax(predictions_in_percentage, axis=-1)
190
- print('Predictions:\n', predictions)
191
- print('Labels:\n', label_batch)
192
- plt.figure(figsize=(10, 10))
193
- for i in range(9):
194
- ax = plt.subplot(3, 3, i + 1)
195
- plt.imshow(image_batch[i].astype("uint8"))
196
- plt.title('pred. ' + class_names[predictions[i]] + ' was ' + class_names[label_batch[i]] + ' ' + str(np.round(predictions_in_percentage[i], 2)), fontsize=8)
197
- plt.axis("off")
198
-
199
- # %%
200
- model.save('pokemon-model_transferlearning.keras')
201
-
202
-
 
1
+ import gradio as gr
 
 
 
2
  import tensorflow as tf
 
 
 
 
 
3
  import numpy as np
4
+ from PIL import Image
5
+
6
+ # Modell laden
7
+ model = tf.keras.models.load_model('pokemon-model_transferlearning')
8
+
9
+ class_names = ['Chansey', 'Growlithe', 'Lapras']
10
+
11
+ def predict(image):
12
+ image = image.resize((150, 150))
13
+ img_array = tf.keras.preprocessing.image.img_to_array(image)
14
+ img_array = np.expand_dims(img_array, axis=0)
15
+ predictions = model.predict(img_array)
16
+ score = tf.nn.softmax(predictions[0])
17
+ return {class_names[i]: float(score[i]) for i in range(3)}
18
+
19
+ # Gradio Interface
20
+ interface = gr.Interface(
21
+ fn=predict,
22
+ inputs=gr.inputs.Image(shape=(150, 150)),
23
+ outputs=gr.outputs.Label(num_top_classes=3),
24
+ title="Pokémon Classifier",
25
+ description="Upload an image of Chansey, Growlithe, or Lapras"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  )
27
 
28
+ if __name__ == "__main__":
29
+ interface.launch()