Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
|
|
|
|
5 |
|
6 |
# Load the trained model
|
7 |
model_path = "pokemon-model_transferlearning1.keras"
|
@@ -11,7 +13,7 @@ model = tf.keras.models.load_model(model_path)
|
|
11 |
def predict_pokemon(image):
|
12 |
# Preprocess image
|
13 |
image = image.resize((150, 150)) # Resize the image to 150x150
|
14 |
-
image = image.convert('RGB') # Ensure
|
15 |
image = np.array(image)
|
16 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
17 |
|
@@ -29,7 +31,7 @@ def predict_pokemon(image):
|
|
29 |
|
30 |
# Streamlit interface
|
31 |
st.title("Pokemon Classifier")
|
32 |
-
st.write("
|
33 |
|
34 |
# Upload image
|
35 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
@@ -42,11 +44,22 @@ if uploaded_image is not None:
|
|
42 |
|
43 |
predictions = predict_pokemon(image)
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Example images
|
48 |
st.sidebar.title("Examples")
|
49 |
example_images = ["pokemon/train/chansey/00000000.png", "pokemon/train/growlithe/00000000.png", "pokemon/train/lapras/00000000.png"]
|
50 |
for example_image in example_images:
|
51 |
st.sidebar.image(example_image, use_column_width=True)
|
52 |
-
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
|
8 |
# Load the trained model
|
9 |
model_path = "pokemon-model_transferlearning1.keras"
|
|
|
13 |
def predict_pokemon(image):
|
14 |
# Preprocess image
|
15 |
image = image.resize((150, 150)) # Resize the image to 150x150
|
16 |
+
image = image.convert('RGB') # Ensure image has 3 channels
|
17 |
image = np.array(image)
|
18 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
19 |
|
|
|
31 |
|
32 |
# Streamlit interface
|
33 |
st.title("Pokemon Classifier")
|
34 |
+
st.write("A simple MLP classification model for image classification using a pretrained model.")
|
35 |
|
36 |
# Upload image
|
37 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
|
|
44 |
|
45 |
predictions = predict_pokemon(image)
|
46 |
|
47 |
+
# Display predictions as a DataFrame
|
48 |
+
st.write("### Prediction Probabilities")
|
49 |
+
df = pd.DataFrame(predictions.items(), columns=["Pokemon", "Probability"])
|
50 |
+
st.dataframe(df)
|
51 |
+
|
52 |
+
# Display predictions as a bar chart
|
53 |
+
st.write("### Prediction Chart")
|
54 |
+
fig, ax = plt.subplots()
|
55 |
+
ax.barh(df["Pokemon"], df["Probability"], color='skyblue')
|
56 |
+
ax.set_xlim(0, 1)
|
57 |
+
ax.set_xlabel('Probability')
|
58 |
+
ax.set_title('Prediction Probabilities')
|
59 |
+
st.pyplot(fig)
|
60 |
|
61 |
# Example images
|
62 |
st.sidebar.title("Examples")
|
63 |
example_images = ["pokemon/train/chansey/00000000.png", "pokemon/train/growlithe/00000000.png", "pokemon/train/lapras/00000000.png"]
|
64 |
for example_image in example_images:
|
65 |
st.sidebar.image(example_image, use_column_width=True)
|
|