Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,50 @@
|
|
1 |
-
import
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
|
6 |
-
|
7 |
-
|
8 |
model_path = "pokemon-model_transferlearning.keras"
|
9 |
model = tf.keras.models.load_model(model_path)
|
10 |
|
11 |
# Define the core prediction function
|
12 |
def predict_pokemon(image):
|
13 |
# Preprocess image
|
14 |
-
image =
|
15 |
-
image = image.resize((150, 150)) # Resize the image to 150x150
|
16 |
image = np.array(image)
|
17 |
-
image = np.expand_dims(image, axis=0)
|
18 |
|
19 |
# Predict
|
20 |
prediction = model.predict(image)
|
21 |
|
22 |
# Apply softmax to get probabilities for each class
|
23 |
-
probabilities = tf.nn.softmax(prediction)
|
24 |
|
25 |
# Map probabilities to Pokemon classes
|
26 |
pokemon_classes = ['Articuno', 'Bulbasaur', 'Charmander']
|
27 |
-
probabilities_dict = {pokemon_class: round(float(probability), 2) for pokemon_class, probability in zip(pokemon_classes, probabilities[0])}
|
28 |
|
29 |
return probabilities_dict
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Load the trained model
|
|
|
7 |
model_path = "pokemon-model_transferlearning.keras"
|
8 |
model = tf.keras.models.load_model(model_path)
|
9 |
|
10 |
# Define the core prediction function
|
11 |
def predict_pokemon(image):
|
12 |
# Preprocess image
|
13 |
+
image = image.resize((150, 150)) # Resize the image to 150x150
|
|
|
14 |
image = np.array(image)
|
15 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
16 |
|
17 |
# Predict
|
18 |
prediction = model.predict(image)
|
19 |
|
20 |
# Apply softmax to get probabilities for each class
|
21 |
+
probabilities = tf.nn.softmax(prediction, axis=1)
|
22 |
|
23 |
# Map probabilities to Pokemon classes
|
24 |
pokemon_classes = ['Articuno', 'Bulbasaur', 'Charmander']
|
25 |
+
probabilities_dict = {pokemon_class: round(float(probability), 2) for pokemon_class, probability in zip(pokemon_classes, probabilities.numpy()[0])}
|
26 |
|
27 |
return probabilities_dict
|
28 |
|
29 |
+
# Streamlit interface
|
30 |
+
st.title("Pokemon Classifier")
|
31 |
+
st.write("A simple MLP classification model for image classification using a pretrained model.")
|
32 |
+
|
33 |
+
# Upload image
|
34 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
35 |
+
|
36 |
+
if uploaded_image is not None:
|
37 |
+
image = Image.open(uploaded_image)
|
38 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
39 |
+
st.write("")
|
40 |
+
st.write("Classifying...")
|
41 |
+
|
42 |
+
predictions = predict_pokemon(image)
|
43 |
+
|
44 |
+
st.write(predictions)
|
45 |
+
|
46 |
+
# Example images
|
47 |
+
st.sidebar.title("Examples")
|
48 |
+
example_images = ["images/01.jpg", "images/02.png", "images/03.png", "images/04.jpg", "images/05.png", "images/06.png"]
|
49 |
+
for example_image in example_images:
|
50 |
+
st.sidebar.image(example_image, use_column_width=True)
|