File size: 16,872 Bytes
5fc68b0 136f9cf 5c221d7 136f9cf 5fc68b0 136f9cf 5fc68b0 136f9cf 5fc68b0 136f9cf 5fc68b0 136f9cf 5fc68b0 136f9cf 5fc68b0 136f9cf 5c221d7 136f9cf 5fc68b0 136f9cf 5c221d7 136f9cf 5c221d7 136f9cf 5c221d7 136f9cf 5c221d7 136f9cf 5fc68b0 136f9cf 5fc68b0 136f9cf 5fc68b0 136f9cf 5fc68b0 5c221d7 5fc68b0 5c221d7 5fc68b0 5c221d7 12621bc 5fc68b0 12621bc 5c221d7 12621bc 5c221d7 12621bc 5fc68b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import { BaseChatModel } from "@langchain/core/language_models/chat_models";
import { Embeddings } from "@langchain/core/embeddings";
import { CHAT_MODELS, EMBEDDING_MODELS, IConfig, MODALITIES, PROVIDERS } from "@/lib/config/types";
import { ConfigManager } from "@/lib/config/manager";
import { ChatOllama, OllamaEmbeddings } from "@langchain/ollama";
import { ChatOpenAI, OpenAIEmbeddings } from "@langchain/openai";
import { ChatAnthropic } from "@langchain/anthropic";
import { ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings } from "@langchain/google-genai";
import { IDocument } from "../document/types";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { Tool } from "langchain/tools";
import { Calculator } from "@langchain/community/tools/calculator";
import { AgentExecutor, createToolCallingAgent } from "langchain/agents";
import { RunnableWithMessageHistory } from "@langchain/core/runnables";
import { DexieChatMemory } from "./memory";
import { DocumentManager } from "@/lib/document/manager";
import { Document } from "@langchain/core/documents";
import { HumanMessage, ToolMessage } from "@langchain/core/messages";
import { IChatSession } from "./types";
import { ChatHFInference } from "./chat-hf";
import { ChatCompletionReasoningEffort } from "openai/resources/chat/completions";
// Define an error interface for better type safety
interface ErrorWithMessage {
message: string;
}
function isErrorWithMessage(error: unknown): error is ErrorWithMessage {
return (
typeof error === 'object' &&
error !== null &&
'message' in error &&
typeof (error as Record<string, unknown>).message === 'string'
);
}
function toErrorWithMessage(error: unknown): ErrorWithMessage {
if (isErrorWithMessage(error)) return error;
try {
return new Error(String(error));
} catch {
// fallback in case there's an error stringifying the error
return new Error('Unknown error');
}
}
function getErrorMessage(error: unknown): string {
return toErrorWithMessage(error).message;
}
export class ChatManager {
model!: BaseChatModel;
embeddings!: Embeddings | null;
controller: AbortController;
configManager: ConfigManager;
config!: IConfig;
documentManager: DocumentManager;
private static instance: ChatManager | null = null;
constructor() {
this.controller = new AbortController();
this.configManager = ConfigManager.getInstance();
this.documentManager = DocumentManager.getInstance();
this.initializeConfig();
}
public static getInstance(): ChatManager {
if (!ChatManager.instance) {
ChatManager.instance = new ChatManager();
}
return ChatManager.instance;
}
private async initializeConfig() {
this.config = await this.configManager.getConfig();
}
public resetController() {
this.controller = new AbortController();
}
private async getChatModel(modelName: string, reasoningEffort?: ChatCompletionReasoningEffort): Promise<BaseChatModel> {
// Ensure config is loaded
if (!this.config) {
await this.initializeConfig();
}
const model = CHAT_MODELS.find(m => m.model === modelName);
if (!model) {
throw new Error(`Chat model ${modelName} not found`);
}
try {
switch (model.provider) {
case PROVIDERS.ollama:
return new ChatOllama({
baseUrl: this.config.ollama_base_url,
model: model.model,
});
case PROVIDERS.openai:
return new ChatOpenAI({
modelName: this.config.openai_model && this.config.openai_model.trim() !== '' ? this.config.openai_model : model.model,
apiKey: this.config.openai_api_key,
reasoningEffort: model.isReasoning ? reasoningEffort : undefined,
maxCompletionTokens: -1,
configuration: {
baseURL: this.config.openai_base_url && this.config.openai_base_url.trim() !== '' ? this.config.openai_base_url : undefined,
}
});
case PROVIDERS.anthropic: {
const isThinkingDisabled = !reasoningEffort || String(reasoningEffort) === "disabled";
return new ChatAnthropic({
modelName: model.model,
apiKey: this.config.anthropic_api_key,
maxTokens: 64000,
thinking: model.isReasoning && !isThinkingDisabled ? {
type: "enabled",
budget_tokens:
reasoningEffort === "high" ? 32000 :
reasoningEffort === "medium" ? 16000 :
8000 // low
} : undefined // disabled
});
}
case PROVIDERS.gemini:
return new ChatGoogleGenerativeAI({
modelName: model.model,
apiKey: this.config.gemini_api_key,
});
case PROVIDERS.huggingface:
return ChatHFInference({
modelName: model.model,
apiKey: this.config.hf_token,
});
default:
throw new Error(`Provider ${model.provider} not implemented yet for chat models`);
}
} catch (error: unknown) {
console.error(`Error creating chat model ${modelName}:`, error);
throw new Error(`Failed to initialize chat model ${modelName}: ${getErrorMessage(error)}`);
}
}
private async getEmbeddingModel(modelName: string): Promise<Embeddings> {
// Ensure config is loaded
if (!this.config) {
await this.initializeConfig();
}
if (!modelName) {
throw new Error("No embedding model specified");
}
const model = EMBEDDING_MODELS.find(m => m.model === modelName);
if (!model) {
throw new Error(`Embedding model ${modelName} not found`);
}
// Check if trying to use Ollama when it's not available
if (model.provider === PROVIDERS.ollama) {
// Check if Ollama base URL is not configured
if (!this.config.ollama_base_url || this.config.ollama_base_url.trim() === '') {
throw new Error(`Ollama base URL is not configured. Please set a valid URL in the settings.`);
}
// Check if Ollama is not available
if (!this.config.ollama_available) {
throw new Error(`Ollama server is not available. Please check your connection to ${this.config.ollama_base_url}`);
}
}
try {
switch (model.provider) {
case PROVIDERS.ollama:
return new OllamaEmbeddings({
baseUrl: this.config.ollama_base_url,
model: model.model,
});
case PROVIDERS.openai:
return new OpenAIEmbeddings({
modelName: model.model,
apiKey: this.config.openai_api_key,
});
case PROVIDERS.gemini:
return new GoogleGenerativeAIEmbeddings({
modelName: model.model,
apiKey: this.config.gemini_api_key,
});
default:
throw new Error(`Provider ${model.provider} not implemented yet for embedding models`);
}
} catch (error: unknown) {
console.error(`Error creating embedding model ${modelName}:`, error);
throw new Error(`Failed to initialize embedding model ${modelName}: ${getErrorMessage(error)}`);
}
}
private async getAgent(
enabledTools: string[] = [],
) {
const prompt = ChatPromptTemplate.fromMessages([
["system", "You are a helpful assistant"],
["placeholder", "{chat_history}"],
["human", "{input}"],
["placeholder", "{agent_scratchpad}"],
]);
const tools: Tool[] = [];
if (enabledTools?.includes("calculator")) {
tools.push(new Calculator());
}
const agent = createToolCallingAgent({
llm: this.model,
tools,
prompt,
});
const agentExecutor = new AgentExecutor({
agent,
tools,
returnIntermediateSteps: true,
})
return new RunnableWithMessageHistory({
runnable: agentExecutor,
getMessageHistory: (sessionId: string) => new DexieChatMemory(sessionId),
inputMessagesKey: "input",
historyMessagesKey: "chat_history"
});
}
private async createMessageWithAttachments(
documents?: IDocument[],
chatSession?: IChatSession,
): Promise<HumanMessage> {
if (!documents || documents.length === 0) {
return new HumanMessage({ content: "" });
}
const currentModel = CHAT_MODELS.find(
m => m.model === (chatSession?.model || this.config.default_chat_model)
);
if (!currentModel) {
throw new Error(`Model ${chatSession?.model || this.config.default_chat_model} not found in CHAT_MODELS`);
}
// Initialize containers for different file types
const processedContent: {
docs: Document[];
images: File[];
audios: File[];
videos: File[];
pdfs: File[];
} = {
docs: [],
images: [],
audios: [],
videos: [],
pdfs: []
};
// Process and categorize documents based on type and model capabilities
for (const doc of documents) {
const file = await this.documentManager.getDocument(doc.id);
switch (doc.type) {
case "image":
if (currentModel.modalities.includes(MODALITIES.image)) {
processedContent.images.push(file);
}
break;
case "audio":
if (currentModel.modalities.includes(MODALITIES.audio)) {
processedContent.audios.push(file);
}
break;
case "video":
if (currentModel.modalities.includes(MODALITIES.video)) {
processedContent.videos.push(file);
}
break;
case "pdf":
if (currentModel.modalities.includes(MODALITIES.pdf)) {
processedContent.pdfs.push(file);
} else {
processedContent.docs.push(...(await this.documentManager.loadDocument(doc.id)));
}
break;
default:
processedContent.docs.push(...(await this.documentManager.loadDocument(doc.id)));
break;
}
}
// Provider-specific content formatting
const providerFormatters = {
[PROVIDERS.openai]: async () => {
const content = [];
// Add images
for (const image of processedContent.images) {
const base64 = Buffer.from(await image.arrayBuffer()).toString("base64");
content.push({
type: "image_url",
image_url: {
url: `data:${image.type};base64,${base64}`
}
});
}
// Add text documents
for (const doc of processedContent.docs) {
content.push({
type: "text",
text: `File name: ${doc.metadata.name}\nFile content: ${doc.pageContent}`
});
}
return content;
},
[PROVIDERS.anthropic]: async () => {
const content = [];
// Add images
for (const image of processedContent.images) {
const base64 = Buffer.from(await image.arrayBuffer()).toString("base64");
content.push({
type: "image_url",
image_url: {
url: `data:${image.type};base64,${base64}`
}
});
}
// Add PDFs
for (const pdf of processedContent.pdfs) {
content.push({
type: "document",
source: {
type: "base64",
data: Buffer.from(await pdf.arrayBuffer()).toString("base64"),
media_type: "application/pdf",
}
});
}
// Add text documents
for (const doc of processedContent.docs) {
content.push({
type: "text",
text: `File name: ${doc.metadata.name}\nFile content: ${doc.pageContent}`
});
}
return content;
},
[PROVIDERS.ollama]: async () => {
// Ollama only supports text content
return processedContent.docs.map(doc => ({
type: "text",
text: `File name: ${doc.metadata.name}\nFile content: ${doc.pageContent}`
}));
},
[PROVIDERS.gemini]: async () => {
const content = [];
// Process media files (images, audio, video)
const mediaFiles = [...processedContent.images, ...processedContent.audios, ...processedContent.videos, ...processedContent.pdfs];
for (const media of mediaFiles) {
content.push({
type: "media",
mimeType: media.type,
data: Buffer.from(await media.arrayBuffer()).toString("base64")
});
}
// Add text documents
for (const doc of processedContent.docs) {
content.push({
type: "text",
text: `File name: ${doc.metadata.name}\nFile content: ${doc.pageContent}`
});
}
return content;
},
[PROVIDERS.huggingface]: async () => {
// Hugging Face Inference API primarily supports text
return processedContent.docs.map(doc => ({
type: "text",
text: `File name: ${doc.metadata.name}\nFile content: ${doc.pageContent}`
}));
}
};
// Get the appropriate formatter for the current provider
const formatter = providerFormatters[currentModel.provider];
if (!formatter) {
throw new Error(`Provider ${currentModel.provider} not implemented for message attachments`);
}
// Format the content according to provider specifications
const content = await formatter();
return new HumanMessage({
content,
response_metadata: {
documents: documents.map(document => ({
id: document.id,
name: document.name,
source: document.path,
type: document.type,
createdAt: document.createdAt,
}))
}
});
}
async *chat(
sessionId: string,
input: string,
documents?: IDocument[],
) {
const memory = new DexieChatMemory(sessionId);
await memory.initialize(); // Initialize memory once at the start
const chatSession = await memory.db.table("sessions").get(sessionId);
this.model = await this.getChatModel(
chatSession?.model || this.config.default_chat_model,
chatSession?.reasoningEffort as ChatCompletionReasoningEffort
);
try {
this.embeddings = await this.getEmbeddingModel(chatSession?.embedding_model || this.config.default_embedding_model || null);
} catch (error) {
console.log(error)
}
const agent = await this.getAgent(chatSession?.enabled_tools || []);
const documentMessage = await this.createMessageWithAttachments(documents, chatSession);
if (documentMessage.content && documentMessage.content.length > 0) {
await memory.addMessage(documentMessage);
}
const eventStream = await agent.streamEvents(
{ input },
{
configurable: {
sessionId,
},
version: "v2",
signal: this.controller.signal,
}
)
let currentResponse = "";
for await (const event of eventStream) {
if (event.event === "on_chat_model_stream") {
const chunk = event.data?.chunk;
console.log(chunk)
if (chunk) {
currentResponse += chunk;
yield { type: "stream", content: chunk };
}
} else if (event.event === "on_chat_model_end") {
console.log(event)
yield { type: "end", content: currentResponse, usageMetadata: event.data?.output?.usage_metadata };
} else if (event.event === "on_tool_start") {
yield { type: "tool_start", name: event.name, input: event.data?.input };
} else if (event.event === "on_tool_end") {
// Store tool interaction in memory
console.log(event)
await memory.addMessage(new ToolMessage({
tool_call_id: event.name,
content: event.data?.output,
name: event.name,
status: "success", // Since we're in the on_tool_end event, we know it succeeded
artifact: event.data, // Store the full tool output data as artifact
response_metadata: {
input: event.data?.input,
timestamp: Date.now()
}
}));
yield { type: "tool_end", name: event.name, output: event.data?.output };
}
}
}
async chatChain(
input: string | HumanMessage,
systemPrompt?: string,
reasoningEffort?: ChatCompletionReasoningEffort,
) {
const model = await this.getChatModel(this.config.default_chat_model, reasoningEffort);
const humanMessage = typeof input === "string" ? new HumanMessage(input) : input;
return await model.invoke([
{ type: "system", content: systemPrompt || "You are a helpful assistant" },
humanMessage
]);
}
}
|