Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,496 Bytes
94b55f0 602d806 0d01d71 3649694 602d806 5dfd724 9c66171 602d806 b5297f4 0d01d71 9c66171 602d806 9c66171 602d806 0d01d71 602d806 b5297f4 0d01d71 602d806 0d01d71 602d806 0d01d71 602d806 654c2e1 602d806 a2d6d06 9c66171 6851b70 602d806 9c66171 602d806 0d01d71 602d806 dad1e49 0d01d71 602d806 0d01d71 5923654 0d01d71 f700076 9357d80 0d01d71 602d806 f700076 0d01d71 602d806 0d01d71 10278bd 602d806 0d01d71 602d806 5dfd724 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import gradio as gr
import torch
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
process_images,
process_queries,
)
import spaces
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoProcessor
# Load model
model_name = "vidore/colpali"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained(
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
model.load_adapter(model_name)
processor = AutoProcessor.from_pretrained(model_name, token = token)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
@spaces.GPU
def search(query: str, ds, images, k):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
qs = []
with torch.no_grad():
batch_query = process_queries(processor, [query], mock_image)
batch_query = {k: v.to(device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
scores = retriever_evaluator.evaluate(qs, ds)
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
results = []
for idx in top_k_indices:
results.append((images[idx], f"Page {idx}"))
return results
@spaces.GPU
def index(files, ds):
"""Example script to run inference with ColPali"""
images = []
for f in files:
images.extend(convert_from_path(f))
if len(images) >= 150:
raise gr.Error("The number of images in the dataset should be less than 150.")
# run inference - docs
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
for batch_doc in tqdm(dataloader):
with torch.no_grad():
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
return f"Uploaded and converted {len(images)} pages", ds, images
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models π")
gr.Markdown("""Demo to test ColPali on PDF documents. The inference code is based on the [ViDoRe benchmark](https://github.com/illuin-tech/vidore-benchmark).
ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).
This demo allows you to upload PDF files and search for the most relevant pages based on your query.
Refresh the page if you change documents !
β οΈ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages.
Other models will be released with better robustness towards different languages and document formats !
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## 1οΈβ£ Upload PDFs")
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
convert_button = gr.Button("π Index documents")
message = gr.Textbox("Files not yet uploaded", label="Status")
embeds = gr.State(value=[])
imgs = gr.State(value=[])
with gr.Column(scale=3):
gr.Markdown("## 2οΈβ£ Search")
query = gr.Textbox(placeholder="Enter your query here", label="Query")
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
# Define the actions
search_button = gr.Button("π Search", variant="primary")
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True) |