Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
from pdf2image import convert_from_path | |
import torch | |
from PIL import Image | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from transformers import AutoProcessor | |
imoort os | |
from custom_colbert.models.paligemma_colbert_architecture import ColPali | |
from custom_colbert.trainer.retrieval_evaluator import CustomEvaluator | |
def process_images(processor, images, max_length: int = 50): | |
texts_doc = ["Describe the image."] * len(images) | |
images = [image.convert("RGB") for image in images] | |
batch_doc = processor( | |
text=texts_doc, | |
images=images, | |
return_tensors="pt", | |
padding="longest", | |
max_length=max_length + processor.image_seq_length, | |
) | |
return batch_doc | |
def process_queries(processor, queries, mock_image, max_length: int = 50): | |
texts_query = [] | |
for query in queries: | |
query = f"Question: {query}<unused0><unused0><unused0><unused0><unused0>" | |
texts_query.append(query) | |
batch_query = processor( | |
images=[mock_image.convert("RGB")] * len(texts_query), | |
# NOTE: the image is not used in batch_query but it is required for calling the processor | |
text=texts_query, | |
return_tensors="pt", | |
padding="longest", | |
max_length=max_length + processor.image_seq_length, | |
) | |
del batch_query["pixel_values"] | |
batch_query["input_ids"] = batch_query["input_ids"][..., processor.image_seq_length :] | |
batch_query["attention_mask"] = batch_query["attention_mask"][..., processor.image_seq_length :] | |
return batch_query | |
def search(query: str, ds, images) -> str: | |
qs = [] | |
with torch.no_grad(): | |
batch_query = process_queries(processor, [query], mock_image) | |
batch_query = {k: v.to(device) for k, v in batch_query.items()} | |
embeddings_query = model(**batch_query) | |
qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) | |
# run evaluation | |
retriever_evaluator = CustomEvaluator(is_multi_vector=True) | |
scores = retriever_evaluator.evaluate(qs, ds) | |
return f"The most relevant page is {scores.argmax(axis=1)}", images[scores.argmax(axis=1)] | |
# return f"Query: {query}, most relevant page: 1, {len(ds)}", images[1] | |
def index(file): | |
"""Example script to run inference with ColPali""" | |
images = [] | |
for f in file: | |
images.extend(convert_from_path(f)) | |
# run inference - docs | |
dataloader = DataLoader( | |
images, | |
batch_size=4, | |
shuffle=False, | |
collate_fn=lambda x: process_images(processor, x), | |
) | |
ds = ["test", "double test"] | |
for batch_doc in tqdm(dataloader): | |
with torch.no_grad(): | |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()} | |
embeddings_doc = model(**batch_doc) | |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) | |
return f"Uploaded and converted {len(images)} pages", ds, images | |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1'] | |
# Load model | |
model_name = "coldoc/colpali-3b-mix-448" | |
token = os.environ.get("HF_TOKEN") | |
model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token=token).eval() | |
model.load_adapter(model_name) | |
processor = AutoProcessor.from_pretrained(model_name, token=token) | |
device = model.device | |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) | |
with gr.Blocks() as demo: | |
gr.Markdown("# PDF to π€ Dataset") | |
gr.Markdown("## 1οΈβ£ Upload PDFs") | |
file = gr.File(file_types=["pdf"], file_count="multiple") | |
gr.Markdown("## 2οΈβ£ Convert the PDFs and upload") | |
convert_button = gr.Button("π Convert and upload") | |
message = gr.Textbox("Files not yet uploaded") | |
embeds = gr.State() | |
imgs = gr.State() | |
# Define the actions | |
convert_button.click( | |
index, | |
inputs=[file], | |
outputs=[message, embeds, imgs] | |
) | |
gr.Markdown("## 3οΈβ£ Search") | |
query = gr.Textbox(placeholder="Enter your query here") | |
search_button = gr.Button("π Search") | |
message2 = gr.Textbox("Query not yet set") | |
output_img = gr.Image() | |
search_button.click( | |
search, inputs=[query, embeds, imgs], | |
outputs=[message2, output_img] | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(debug=True) |