Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import torch | |
from colpali_engine.models.paligemma_colbert_architecture import ColPali | |
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator | |
from colpali_engine.utils.colpali_processing_utils import ( | |
process_images, | |
process_queries, | |
) | |
import spaces | |
from pdf2image import convert_from_path | |
from PIL import Image | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from transformers import AutoProcessor | |
def search(query: str, ds, images, k): | |
qs = [] | |
with torch.no_grad(): | |
batch_query = process_queries(processor, [query], mock_image) | |
batch_query = {k: v.to(device) for k, v in batch_query.items()} | |
embeddings_query = model(**batch_query) | |
qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) | |
retriever_evaluator = CustomEvaluator(is_multi_vector=True) | |
scores = retriever_evaluator.evaluate(qs, ds) | |
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] | |
results = [] | |
for idx in top_k_indices: | |
results.append((images[idx], f"Page {idx}")) | |
return results | |
def index(files, ds): | |
"""Example script to run inference with ColPali""" | |
images = [] | |
for f in files: | |
images.extend(convert_from_path(f)) | |
if len(images) >= 150: | |
raise gr.Error("The number of images in the dataset should be less than 150.") | |
# run inference - docs | |
dataloader = DataLoader( | |
images, | |
batch_size=4, | |
shuffle=False, | |
collate_fn=lambda x: process_images(processor, x), | |
) | |
print(f"model device: {model.device}") | |
print(f"device: {device}") | |
for batch_doc in tqdm(dataloader): | |
with torch.no_grad(): | |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()} | |
embeddings_doc = model(**batch_doc) | |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) | |
return f"Uploaded and converted {len(images)} pages", ds, images | |
# Load model | |
model_name = "vidore/colpali" | |
token = os.environ.get("HF_TOKEN") | |
model = ColPali.from_pretrained( | |
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval() | |
model.load_adapter(model_name) | |
processor = AutoProcessor.from_pretrained(model_name, token = token) | |
device = model.device | |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models π") | |
gr.Markdown("""Demo to test ColPali on PDF documents. The inference code is based on the [ViDoRe benchmark](https://github.com/illuin-tech/vidore-benchmark). | |
ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449). | |
This demo allows you to upload PDF files and search for the most relevant pages based on your query. | |
Refresh the page if you change documents ! | |
β οΈ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages. | |
Other models will be released with better robustness towards different languages and document formats ! | |
""") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Markdown("## 1οΈβ£ Upload PDFs") | |
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs") | |
convert_button = gr.Button("π Index documents") | |
message = gr.Textbox("Files not yet uploaded", label="Status") | |
embeds = gr.State(value=[]) | |
imgs = gr.State(value=[]) | |
with gr.Column(scale=3): | |
gr.Markdown("## 2οΈβ£ Search") | |
query = gr.Textbox(placeholder="Enter your query here", label="Query") | |
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5) | |
# Define the actions | |
search_button = gr.Button("π Search", variant="primary") | |
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True) | |
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) | |
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery]) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(debug=True) |