Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -13,24 +13,15 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
13 |
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain.vectorstores import FAISS
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
# Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
|
19 |
-
if huggingface_token:
|
20 |
-
login(token=huggingface_token)
|
21 |
-
|
22 |
-
# Configuraci贸n del modelo de generaci贸n de texto
|
23 |
@st.cache_resource
|
24 |
-
def
|
25 |
-
llm = HuggingFaceEndpoint(
|
26 |
-
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
27 |
-
task="text-generation"
|
28 |
-
)
|
29 |
-
llm_engine_hf = ChatHuggingFace(llm=llm)
|
30 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
34 |
|
35 |
# Configuraci贸n del modelo de clasificaci贸n
|
36 |
@st.cache_resource
|
@@ -89,8 +80,8 @@ Aseg煤rese de que la traducci贸n sea precisa y conserve el significado original
|
|
89 |
'''
|
90 |
|
91 |
formatted_prompt = template.replace("{TEXT}", text).replace("{LANGUAGE}", target_language)
|
92 |
-
response =
|
93 |
-
translated_text = response
|
94 |
|
95 |
return translated_text
|
96 |
|
@@ -103,8 +94,8 @@ def summarize(text, length):
|
|
103 |
Aseg煤rese de que el resumen sea conciso y conserve el significado original del documento.
|
104 |
'''
|
105 |
|
106 |
-
response =
|
107 |
-
summarized_text = response
|
108 |
|
109 |
return summarized_text
|
110 |
|
@@ -135,7 +126,6 @@ def handle_uploaded_file(uploaded_file):
|
|
135 |
return str(e)
|
136 |
|
137 |
def main():
|
138 |
-
st.image("./icon.jpg", width=100)
|
139 |
st.title("LexAIcon")
|
140 |
st.write("Puedes conversar con este chatbot basado en Mistral7B-Instruct y subir archivos para que el chatbot los procese.")
|
141 |
|
@@ -171,8 +161,8 @@ def main():
|
|
171 |
search_docs = vector_store.similarity_search(prompt)
|
172 |
context = " ".join([doc.page_content for doc in search_docs])
|
173 |
prompt_with_context = f"Contexto: {context}\n\nPregunta: {prompt}"
|
174 |
-
response =
|
175 |
-
msg = response
|
176 |
|
177 |
elif operation == "Resumir":
|
178 |
if summary_length == "corto":
|
@@ -187,7 +177,8 @@ def main():
|
|
187 |
msg = translate(prompt, target_language)
|
188 |
|
189 |
else:
|
190 |
-
|
|
|
191 |
|
192 |
st.session_state.messages.append({"role": "assistant", "content": msg})
|
193 |
st.chat_message("assistant").write(msg)
|
|
|
13 |
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain.vectorstores import FAISS
|
15 |
|
16 |
+
# Cargar el modelo y el pipeline de Hugging Face
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
@st.cache_resource
|
18 |
+
def load_pipeline():
|
|
|
|
|
|
|
|
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
20 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
21 |
+
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
22 |
+
return text_gen_pipeline
|
23 |
|
24 |
+
text_gen_pipeline = load_pipeline()
|
25 |
|
26 |
# Configuraci贸n del modelo de clasificaci贸n
|
27 |
@st.cache_resource
|
|
|
80 |
'''
|
81 |
|
82 |
formatted_prompt = template.replace("{TEXT}", text).replace("{LANGUAGE}", target_language)
|
83 |
+
response = text_gen_pipeline(formatted_prompt, max_length=512)
|
84 |
+
translated_text = response[0]['generated_text']
|
85 |
|
86 |
return translated_text
|
87 |
|
|
|
94 |
Aseg煤rese de que el resumen sea conciso y conserve el significado original del documento.
|
95 |
'''
|
96 |
|
97 |
+
response = text_gen_pipeline(template, max_length=512)
|
98 |
+
summarized_text = response[0]['generated_text']
|
99 |
|
100 |
return summarized_text
|
101 |
|
|
|
126 |
return str(e)
|
127 |
|
128 |
def main():
|
|
|
129 |
st.title("LexAIcon")
|
130 |
st.write("Puedes conversar con este chatbot basado en Mistral7B-Instruct y subir archivos para que el chatbot los procese.")
|
131 |
|
|
|
161 |
search_docs = vector_store.similarity_search(prompt)
|
162 |
context = " ".join([doc.page_content for doc in search_docs])
|
163 |
prompt_with_context = f"Contexto: {context}\n\nPregunta: {prompt}"
|
164 |
+
response = text_gen_pipeline(prompt_with_context, max_length=512)
|
165 |
+
msg = response[0]['generated_text']
|
166 |
|
167 |
elif operation == "Resumir":
|
168 |
if summary_length == "corto":
|
|
|
177 |
msg = translate(prompt, target_language)
|
178 |
|
179 |
else:
|
180 |
+
response = text_gen_pipeline(prompt, max_length=512)
|
181 |
+
msg = response[0]['generated_text']
|
182 |
|
183 |
st.session_state.messages.append({"role": "assistant", "content": msg})
|
184 |
st.chat_message("assistant").write(msg)
|