Manu commited on
Commit
af44b2b
·
1 Parent(s): 66fd09b

Initial commit

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ /saved_model
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import gradio as gr
3
+ from scipy.ndimage import zoom
4
+ import cv2
5
+ import numpy as np
6
+
7
+ # Load the pre-trained model
8
+ from huggingface_hub import from_pretrained_keras
9
+
10
+ model = from_pretrained_keras("manufy/mnist_model_keras")
11
+ #model = tf.keras.models.load_model('mnist_model.keras')
12
+
13
+ def recognize_digit(input):
14
+ image = input['layers'][0]
15
+ print("Type of image variable:", type(image))
16
+ dimensions = image.shape
17
+ print("Dimensions of the image:", dimensions)
18
+ # Resize image to 28x28 using interpolation
19
+ resized_image = cv2.resize(image, (28, 28))
20
+ # Convert image to grayscale
21
+ gray_image = cv2.cvtColor(resized_image, cv2.COLOR_RGBA2GRAY)
22
+ # Reshape the image to add a single channel dimension
23
+ final_image = np.expand_dims(gray_image, axis=-1)
24
+
25
+ print("Final Dimensions of the image:", final_image.shape)
26
+
27
+ #if image.shape[-1] == 3: # If the image has 3 color channels (RGB)
28
+ # image = image.mean(axis=-1) # Convert to grayscale
29
+ # Resize the image to 28x28
30
+ #image = zoom(image, (28 / image.shape[0], 28 / image.shape[1]))
31
+ final_image = final_image.reshape((1, 28, 28, 1)).astype('float32') / 255
32
+ prediction = model.predict(final_image)
33
+ return {str(i): float(prediction[0][i]) for i in range(10)}, input['layers'][0]
34
+ #final_image[0, :, :, 0]
35
+
36
+ #return ''
37
+
38
+ # Configure the Sketchpad
39
+ sketchpad = gr.Sketchpad()
40
+
41
+ # Create the Gradio interface
42
+ interface = gr.Interface(
43
+ fn=recognize_digit,
44
+ inputs="sketchpad",
45
+ outputs=[gr.Label(num_top_classes=3), "image"],
46
+ live=True,
47
+ title="Digit Recognizer",
48
+ description="Draw a digit and let the model recognize it."
49
+ )
50
+
51
+ # Launch the interface
52
+ interface.launch()
load-model-from-huggingface.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from huggingface_hub import from_pretrained_keras
2
+
3
+ model = from_pretrained_keras("manufy/mnist_model_keras")
push-model-to-huggingface-with-cli.sh ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ #/bin/bash
2
+ # PUSH model to HuggingFace using CLI
3
+ # HUGGINGFACE_TOKEN should be set on your environment variables
4
+ # commit message is not customizable
5
+ # https://huggingface.co/docs/huggingface_hub/guides/upload
6
+
7
+ huggingface-cli upload manufy/mnist_model_keras saved_model . --token $HUGGINGFACE_TOKEN
push-model-to-huggingface-with-commit.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://huggingface.co/docs/huggingface_hub/guides/upload
2
+
3
+ # PUSH model to HuggingFace manufy/mnist_model_keras
4
+ # with custom commit message
5
+
6
+ ###############################
7
+ # 1 - Initial generic imports #
8
+ ###############################
9
+
10
+ from icecream import ic
11
+ ic("--- Importing generic libraries ---")
12
+ from dotenv import load_dotenv, find_dotenv
13
+ import os
14
+ from datetime import datetime
15
+
16
+ ###############################################################################
17
+ # 2 - Setting up environment variable HUGGINGFACE_TOKEN with write permission #
18
+ ###############################################################################
19
+
20
+ ic("--- Setting HF API token ---")
21
+ load_dotenv(find_dotenv())
22
+ token = os.getenv("HUGGINGFACE_TOKEN")
23
+ formatted_now = datetime.now().strftime("%d/%m/%Y, %H:%M:%S")
24
+ ic("--- Importing HF API ---")
25
+ from huggingface_hub import HfApi, CommitOperationAdd, CommitOperationDelete
26
+ ic("--- Executing commit with custom message ---")
27
+ api = HfApi()
28
+ operations = [
29
+ CommitOperationAdd(path_in_repo="saved_model", path_or_fileobj="mnist_model.keras")
30
+ ]
31
+ api.create_commit(
32
+ repo_id="manufy/mnist_model_keras",
33
+ operations=operations,
34
+ commit_message=f"Updated model at {formatted_now}.",
35
+ token=token
36
+ )
push-model-to-huggingface-with-upload-folder.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://huggingface.co/docs/huggingface_hub/guides/upload
2
+
3
+ # PUSH model to HuggingFace manufy/mnist_model_keras
4
+ # using upload_folder, commit message is set by defaulr and not customizable
5
+
6
+ ###############################
7
+ # 1 - Initial generic imports #
8
+ ###############################
9
+
10
+ from icecream import ic
11
+ ic("--- Importing generic libraries ---")
12
+ from dotenv import load_dotenv, find_dotenv
13
+ import os
14
+
15
+ ###############################################################################
16
+ # 2 - Setting up environment variable HUGGINGFACE_TOKEN with write permission #
17
+ ###############################################################################
18
+
19
+ ic("--- Importing HF API token ---")
20
+ load_dotenv(find_dotenv())
21
+ token = os.getenv("HUGGINGFACE_TOKEN")
22
+
23
+ # The code in the comments is not needed
24
+ # the model doen't need to be loaded to be uploaded
25
+
26
+ ################################################################
27
+ # 3 - Importing keras load_model #
28
+ ################################################################
29
+
30
+ # ic("--- Importing tensorflow load_model ---")
31
+ # from tensorflow.keras.models import load_model
32
+ # ic("--- Importing huggingface_hub ---")
33
+
34
+ ###########################
35
+ # 3 - Loading keras model #
36
+ ###########################
37
+
38
+ # ic("--- Loading local keras model ---" )
39
+ # model = load_model('mnist_model.keras')
40
+
41
+ ######################################
42
+ # 3 - Uploading model to HuggingFace #
43
+ ######################################
44
+
45
+ ic ("--- Importing HF API ---")
46
+ from huggingface_hub import HfApi
47
+ ic("--- Settig up HF API ---")
48
+ HuggingFace_api = HfApi()
49
+ ic("--- Uploading model ---")
50
+ HuggingFace_api.upload_folder(
51
+ folder_path="saved_model/",
52
+ repo_id="manufy/mnist_model_keras",
53
+ repo_type="model",
54
+ token=token)
55
+
56
+ ########################################################################
57
+ # The following are failed attempts to upload the model to HuggingFace #
58
+ ########################################################################
59
+
60
+ # upload_folder("manufy/mnist_model_keras")
61
+
62
+ # not supported in keras 3
63
+ # NotImplementedError: Cannot use 'save_pretrained_keras':
64
+ # Keras 3.x is not supported.
65
+ # Please save models manually and upload them
66
+ # using `upload_folder` or `huggingface-cli upload`.
67
+
68
+ #ic("--- Saving huggingface model ---" )
69
+ #huggingface_hub.save_pretrained_keras('saved_model/')
70
+
71
+
72
+ #push_to_hub_keras(model,
73
+ # "manufy/mnist_model_keras")
74
+ # include_optimizer = True,
75
+ # tags = ["object-detection", "some_other_tag"]
76
+ #)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pencv-python
2
+ tensorflow
3
+ icecream
sketchpad.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import numpy as np
4
+ import cv2
5
+
6
+
7
+
8
+ def classify(input):
9
+ image = input['layers'][0]
10
+ print("Type of image variable:", type(image))
11
+ dimensions = image.shape
12
+ print("Dimensions of the image:", dimensions)
13
+ # Resize image to 28x28 using interpolation
14
+ resized_image = cv2.resize(image, (28, 28))
15
+ # Convert image to grayscale
16
+ gray_image = cv2.cvtColor(resized_image, cv2.COLOR_RGBA2GRAY)
17
+ # Reshape the image to add a single channel dimension
18
+ final_image = np.expand_dims(gray_image, axis=-1)
19
+
20
+ print("Final image shape:", final_image.shape)
21
+ print("Final image:", final_image)
22
+
23
+ #input = np.reshape(input, (1, 28, 28))
24
+ #print(input)
25
+ return ''
26
+
27
+ label = gr.Label(num_top_classes=10)
28
+
29
+ interface = gr.Interface(fn=classify, inputs="sketchpad", outputs=label,
30
+ live=True)
31
+ interface.launch()
static/model.png ADDED
training.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from icecream import ic
3
+ ic("--- Importing tensorflow ---")
4
+ import tensorflow as tf
5
+ from tensorflow.keras import layers, models
6
+ from tensorflow. keras. utils import plot_model
7
+ from tensorflow.keras import Input
8
+
9
+ # load mnist dataset
10
+ ic("------ Loading mnist dataset ------")
11
+ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
12
+
13
+ # normalize 60000 instances, 28x28 pixels 1 channel
14
+
15
+ ic("------ Normalizing data ------")
16
+ train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
17
+ test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
18
+
19
+ # labels are output numbers, 0 to 9 we need to convert them to one-hot encoding
20
+
21
+ ic("------ One-hot encoding labels ------")
22
+ train_labels = tf.keras.utils.to_categorical(train_labels)
23
+
24
+ # 1 for correct digit, 0 for incorrect
25
+
26
+
27
+ ic("------ Creating model ------")
28
+ # define model
29
+ model = models.Sequential()
30
+
31
+
32
+ # Add an Input layer
33
+ model.add(Input(shape=(28, 28, 1)))
34
+
35
+ # create convolutional layer
36
+ # 32 filters, 3x3 kernel, relu activation function, input shape 28x28x1
37
+ # them create max pooling layer 2x2
38
+
39
+ #model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
40
+ model.add(layers.MaxPooling2D((2, 2)))
41
+
42
+ model.add(layers.Conv2D(64, (3, 3), activation='relu',))
43
+ model.add(layers.MaxPooling2D((2, 2)))
44
+
45
+ model.add(layers.Conv2D(64, (3, 3), activation='relu',))
46
+ model.add(layers.Flatten())
47
+
48
+ model.add(layers.Dense(64, activation='relu'))
49
+
50
+ # output layer,
51
+
52
+ model.add(layers.Dense(10, activation='softmax'))
53
+
54
+ model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
55
+
56
+ # generate model.png with architecture plot
57
+
58
+ ic("------ Plotting model ------")
59
+ plot_model(model, to_file='static/model.png', show_shapes=True, show_layer_names=True)
60
+
61
+
62
+ # train
63
+
64
+ ic("------ Training model ------")
65
+ #model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)
66
+
67
+ # save model
68
+
69
+ ic("------ Saving .h5 model ------")
70
+ model.save('saved_model/keras/mnist_model.h5')
71
+ ic("------ Saving .keras model ------")
72
+ model.save('saved_model/keras/mnist_model.keras')
73
+ ic("------ Exporting .keras model ------")
74
+ model.export('saved_model/exported')