import tensorflow as tf import gradio as gr from scipy.ndimage import zoom import cv2 import numpy as np # Load the pre-trained model from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("manufy/mnist_model_keras") #model = tf.keras.models.load_model('mnist_model.keras') def recognize_digit(input): image = input['layers'][0] print("Type of image variable:", type(image)) dimensions = image.shape print("Dimensions of the image:", dimensions) # Resize image to 28x28 using interpolation resized_image = cv2.resize(image, (28, 28)) # Convert image to grayscale gray_image = cv2.cvtColor(resized_image, cv2.COLOR_RGBA2GRAY) # Reshape the image to add a single channel dimension final_image = np.expand_dims(gray_image, axis=-1) print("Final Dimensions of the image:", final_image.shape) #if image.shape[-1] == 3: # If the image has 3 color channels (RGB) # image = image.mean(axis=-1) # Convert to grayscale # Resize the image to 28x28 #image = zoom(image, (28 / image.shape[0], 28 / image.shape[1])) final_image = final_image.reshape((1, 28, 28, 1)).astype('float32') / 255 prediction = model.predict(final_image) return {str(i): float(prediction[0][i]) for i in range(10)}, input['layers'][0] #final_image[0, :, :, 0] #return '' # Configure the Sketchpad sketchpad = gr.Sketchpad() # Create the Gradio interface interface = gr.Interface( fn=recognize_digit, inputs="sketchpad", outputs=[gr.Label(num_top_classes=3), "image"], live=True, title="Digit Recognizer", description="Draw a digit and let the model recognize it." ) # Launch the interface interface.launch()