import gradio as gr import numpy as np import cv2 def classify(input): image = input['layers'][0] print("Type of image variable:", type(image)) dimensions = image.shape print("Dimensions of the image:", dimensions) # Resize image to 28x28 using interpolation resized_image = cv2.resize(image, (28, 28)) # Convert image to grayscale gray_image = cv2.cvtColor(resized_image, cv2.COLOR_RGBA2GRAY) # Reshape the image to add a single channel dimension final_image = np.expand_dims(gray_image, axis=-1) print("Final image shape:", final_image.shape) print("Final image:", final_image) #input = np.reshape(input, (1, 28, 28)) #print(input) return '' label = gr.Label(num_top_classes=10) interface = gr.Interface(fn=classify, inputs="sketchpad", outputs=label, live=True) interface.launch()