Manu
commited on
Commit
·
c4b5ce1
1
Parent(s):
2843e59
fixed bug in segmentation_utils.py finally clause
Browse files- segmentation_utils.py +38 -245
segmentation_utils.py
CHANGED
@@ -2,6 +2,7 @@ import requests
|
|
2 |
from pycocotools import mask
|
3 |
import matplotlib.pyplot as plt
|
4 |
from PIL import Image, ImageDraw, ImageOps, ImageFont
|
|
|
5 |
import os
|
6 |
import base64
|
7 |
import io
|
@@ -10,93 +11,13 @@ import numpy as np
|
|
10 |
import cv2
|
11 |
from image_utils import print_text_on_image_centered, create_background_image
|
12 |
from icecream import ic
|
13 |
-
import traceback
|
14 |
-
from pprint import pprint
|
15 |
|
16 |
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
# Si la entrada es una URL, descarga la imagen y la convierte en un array de numpy
|
21 |
-
# Si la entrada es una ruta de archivo, carga la imagen y la convierte en un array de numpy
|
22 |
-
# Si la entrada ya es un array de numpy, devuélvela tal cual
|
23 |
-
# Si la entrada no es ninguna de las anteriores, lanza un ValueError
|
24 |
-
|
25 |
-
def transform_image_to_numpy_array(input):
|
26 |
-
if isinstance(input, np.ndarray):
|
27 |
-
# Si la entrada es un array de numpy, devuélvela tal cual
|
28 |
-
h, w = input.shape[:2]
|
29 |
-
new_height = int(h * (500 / w))
|
30 |
-
return cv2.resize(input, (500, new_height))
|
31 |
-
elif isinstance(input, str):
|
32 |
-
# Si la entrada es una cadena, podría ser una URL o una ruta de archivo
|
33 |
-
if input.startswith('http://') or input.startswith('https://'):
|
34 |
-
# Si la entrada es una URL, descarga la imagen y conviértela en un array de numpy
|
35 |
-
# se necesita un header para evitar el error 403
|
36 |
-
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36"}
|
37 |
-
response = requests.get(input, headers=headers)
|
38 |
-
ic(response.status_code)
|
39 |
-
image_array = np.frombuffer(response.content, dtype=np.uint8)
|
40 |
-
image = cv2.imdecode(image_array, -1)
|
41 |
-
|
42 |
-
# Si la imagen tiene 3 canales (es decir, es una imagen en color),
|
43 |
-
# convertirla de BGR a RGB
|
44 |
-
if image.ndim == 3:
|
45 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
46 |
-
image = Image.fromarray(image).convert("RGBA")
|
47 |
-
image = np.array(image)
|
48 |
-
else:
|
49 |
-
# Si la entrada es una ruta de archivo, carga la imagen y conviértela en un array de numpy
|
50 |
-
image = cv2.imread(input)
|
51 |
-
|
52 |
-
h, w = image.shape[:2]
|
53 |
-
new_height = int(h * (500 / w))
|
54 |
-
return cv2.resize(image, (500, new_height))
|
55 |
-
else:
|
56 |
-
raise ValueError("La entrada no es un array de numpy, una URL ni una ruta de archivo.")
|
57 |
-
|
58 |
-
def transform_image_to_numpy_array2(input):
|
59 |
-
if isinstance(input, np.ndarray):
|
60 |
-
# Si la entrada es un array de numpy, devuélvela tal cual
|
61 |
-
return cv2.resize(input, (500, 500))
|
62 |
-
elif isinstance(input, str):
|
63 |
-
# Si la entrada es una cadena, podría ser una URL o una ruta de archivo
|
64 |
-
if input.startswith('http://') or input.startswith('https://'):
|
65 |
-
# Si la entrada es una URL, descarga la imagen y conviértela en un array de numpy
|
66 |
-
# se necesita un header para evitar el error 403
|
67 |
-
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36"}
|
68 |
-
response = requests.get(input, headers=headers)
|
69 |
-
ic(response.status_code)
|
70 |
-
image_array = np.frombuffer(response.content, dtype=np.uint8)
|
71 |
-
image = cv2.imdecode(image_array, -1)
|
72 |
-
|
73 |
-
# Si la imagen tiene 3 canales (es decir, es una imagen en color),
|
74 |
-
# convertirla de BGR a RGB
|
75 |
-
if image.ndim == 3:
|
76 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
77 |
-
image = Image.fromarray(image).convert("RGBA")
|
78 |
-
image = np.array(image)
|
79 |
-
else:
|
80 |
-
# Si la entrada es una ruta de archivo, carga la imagen y conviértela en un array de numpy
|
81 |
-
image = cv2.imread(input)
|
82 |
-
|
83 |
-
return cv2.resize(image, (500, 500))
|
84 |
-
else:
|
85 |
-
raise ValueError("La entrada no es un array de numpy, una URL ni una ruta de archivo.")
|
86 |
-
|
87 |
-
def segment_image_from_numpy(image_array, api_token, model):
|
88 |
-
|
89 |
-
#API_URL = "https://api-inference.huggingface.co/models/facebook/mask2former-swin-tiny-coco-panoptic"
|
90 |
-
API_URL = f"https://api-inference.huggingface.co/models/facebook/{model}"
|
91 |
-
headers = {"Authorization": f"Bearer {api_token}"}
|
92 |
-
|
93 |
-
# Convert the image to bytes
|
94 |
-
is_success, im_buf_arr = cv2.imencode(".jpg", image_array)
|
95 |
-
data = im_buf_arr.tobytes()
|
96 |
-
response = requests.post(API_URL, headers=headers, data=data)
|
97 |
-
pprint(response.json())
|
98 |
-
return response.json()
|
99 |
-
|
100 |
|
101 |
def segment_image_from_path(image_path):
|
102 |
with open(image_path, "rb") as f:
|
@@ -118,90 +39,13 @@ def decode_mask(mask_str, size):
|
|
118 |
mask_image = mask_image.resize(size).convert("L")
|
119 |
return mask_image
|
120 |
|
121 |
-
|
122 |
def overlay_masks_on_image(image, segments, transparency=0.4):
|
123 |
-
if isinstance(image, np.ndarray):
|
124 |
-
image = Image.fromarray(image)
|
125 |
-
|
126 |
-
original_image = image
|
127 |
-
if original_image.mode != 'RGBA':
|
128 |
-
original_image = original_image.convert('RGBA')
|
129 |
-
|
130 |
-
overlay = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
131 |
-
text_layer = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
132 |
-
|
133 |
-
for segment in segments:
|
134 |
-
mask_str = segment['mask']
|
135 |
-
mask_image = decode_mask(mask_str, original_image.size)
|
136 |
-
color = generate_random_color()
|
137 |
-
|
138 |
-
color_mask = ImageOps.colorize(mask_image, black="black", white=color)
|
139 |
-
color_mask.putalpha(mask_image)
|
140 |
-
|
141 |
-
overlay = Image.alpha_composite(overlay, color_mask)
|
142 |
-
|
143 |
-
# Calcula el centroide de la mascara
|
144 |
-
x, y = np.where(np.array(mask_image) > 0)
|
145 |
-
centroid_x = x.mean()
|
146 |
-
centroid_y = y.mean()
|
147 |
-
|
148 |
-
# Imprime la etiqueta y la puntuación en la capa de texto
|
149 |
-
font_size = 30
|
150 |
-
draw = ImageDraw.Draw(text_layer)
|
151 |
-
font = ImageFont.load_default().font_variant(size=font_size)
|
152 |
-
label = segment['label']
|
153 |
-
score = segment['score']
|
154 |
-
text =f"{label}: {score}"
|
155 |
-
|
156 |
-
# Calcula el tamaño del texto
|
157 |
-
text_bbox = draw.textbbox((0, 0), text, font=font)
|
158 |
-
text_width = text_bbox[2] - text_bbox[0]
|
159 |
-
text_height = text_bbox[3] - text_bbox[1]
|
160 |
-
|
161 |
-
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
162 |
-
text_x = max(0, min(centroid_x - text_width / 2, original_image.size[0] - text_width))
|
163 |
-
text_y = max(0, min(centroid_y - text_height / 2, original_image.size[1] - text_height))
|
164 |
-
|
165 |
-
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
166 |
-
|
167 |
-
# Ajusta la transparencia de la capa de superposición
|
168 |
-
overlay = Image.blend(original_image, overlay, transparency)
|
169 |
-
|
170 |
-
# Combina la capa de superposición con la capa de texto
|
171 |
-
final_image = Image.alpha_composite(overlay, text_layer)
|
172 |
-
|
173 |
-
return final_image
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
def overlay_masks_on_image2(image, segments, transparency=0.4):
|
183 |
# Convert numpy array to PIL Image
|
184 |
-
|
185 |
-
|
186 |
#original_image = Image.open(image).convert("RGBA")
|
187 |
-
# para file es str
|
188 |
-
# para url es numpy.ndarray
|
189 |
-
# para cv.imread es numpy.ndarray
|
190 |
-
|
191 |
-
# Convertir el array de numpy a una imagen PIL si es necesario
|
192 |
-
if isinstance(image, np.ndarray):
|
193 |
-
image = Image.fromarray(image)
|
194 |
-
|
195 |
-
print(type(image))
|
196 |
-
print(image)
|
197 |
-
original_image = image
|
198 |
-
|
199 |
-
if original_image.mode != 'RGBA':
|
200 |
-
original_image = original_image.convert('RGBA')
|
201 |
-
|
202 |
-
print(original_image.size)
|
203 |
overlay = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
204 |
-
|
205 |
# Nueva capa para el texto
|
206 |
|
207 |
text_layer = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
@@ -212,27 +56,6 @@ def overlay_masks_on_image2(image, segments, transparency=0.4):
|
|
212 |
print(segment['label'] + " " + str(segment['score']))
|
213 |
mask_str = segment['mask']
|
214 |
mask_image = decode_mask(mask_str, original_image.size)
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
# Convierte la imagen de la máscara a un array de numpy
|
219 |
-
mask_array = np.array(mask_image)
|
220 |
-
|
221 |
-
# Encuentra los píxeles blancos
|
222 |
-
y, x = np.where(mask_array > 0)
|
223 |
-
|
224 |
-
# Calcula el cuadro delimitador de los píxeles blancos
|
225 |
-
x_min, y_min, width, height = cv2.boundingRect(np.array(list(zip(x, y))))
|
226 |
-
|
227 |
-
|
228 |
-
# Crea un objeto ImageDraw para dibujar en la imagen original
|
229 |
-
draw = ImageDraw.Draw(original_image)
|
230 |
-
|
231 |
-
|
232 |
-
# Dibuja el cuadro delimitador en la imagen original
|
233 |
-
draw.rectangle([(x_min, y_min), (x_min + width, y_min + height)], outline=(0, 255, 0), width=2)
|
234 |
-
|
235 |
-
|
236 |
color = generate_random_color()
|
237 |
|
238 |
color_mask = ImageOps.colorize(mask_image, black="black", white=color)
|
@@ -240,7 +63,6 @@ def overlay_masks_on_image2(image, segments, transparency=0.4):
|
|
240 |
|
241 |
overlay = Image.alpha_composite(overlay, color_mask)
|
242 |
|
243 |
-
|
244 |
# Calcula el centroide de la mascara
|
245 |
|
246 |
x, y = np.where(np.array(mask_image) > 0)
|
@@ -261,33 +83,11 @@ def overlay_masks_on_image2(image, segments, transparency=0.4):
|
|
261 |
|
262 |
text_width = 500
|
263 |
text_height = 100
|
264 |
-
|
265 |
-
|
266 |
-
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
267 |
-
text_x = max(0, min(centroid_x - text_width / 2, original_image.size[0] - text_width))
|
268 |
-
text_y = max(0, min(centroid_y - text_height / 2, original_image.size[1] - text_height))
|
269 |
-
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
270 |
-
text_x = max(0, min(centroid_x, original_image.size[0] - text_width))
|
271 |
-
text_y = max(0, min(centroid_y, original_image.size[1] - text_height))
|
272 |
-
|
273 |
-
|
274 |
-
# Calcula las coordenadas del texto
|
275 |
-
text_x = centroid_x - text_width / 2
|
276 |
-
text_y = centroid_y - text_height / 2
|
277 |
-
|
278 |
-
|
279 |
-
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
280 |
-
text_x = max(0, min(text_x, original_image.size[0] - text_width))
|
281 |
-
text_y = max(0, min(text_y, original_image.size[1] - text_height))
|
282 |
-
|
283 |
-
|
284 |
draw.text((centroid_x - text_width / 2, centroid_y - text_height / 2), text, fill=(255, 255, 255, 255), font=font)
|
285 |
-
|
286 |
-
#draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
287 |
|
288 |
# Ajusta la transparencia de la capa de superposición
|
289 |
-
|
290 |
-
print(overlay.size)
|
291 |
overlay = Image.blend(original_image, overlay, transparency)
|
292 |
|
293 |
# Combina la capa de superposición con la capa de texto
|
@@ -302,70 +102,63 @@ def generate_random_color():
|
|
302 |
return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
303 |
|
304 |
|
305 |
-
def segment_and_overlay_results(
|
306 |
#segments = segment_image_from_image(image)
|
307 |
#final_image = overlay_masks_on_image(image, segments)
|
308 |
#return final_image
|
309 |
processed_image = None # Initialize processed_image
|
310 |
segments = []
|
311 |
-
#image_type = None
|
312 |
-
#if isinstance(image_path, str):
|
313 |
-
# image_type = 'FILE'
|
314 |
-
# image = cv2.imread('cats.jpg')
|
315 |
-
#elif isinstance(image_path, np.ndarray):
|
316 |
-
# image_type = 'NUMPY ARRAY'
|
317 |
-
#else:
|
318 |
-
# raise ValueError("The image is neither a Image nor a local file.")
|
319 |
-
|
320 |
-
#ic(image_type)
|
321 |
-
image = transform_image_to_numpy_array(image_path)
|
322 |
-
# imprime tres primeros pixeles
|
323 |
-
print(type(image))
|
324 |
-
ic(image[0, 0:3])
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
try:
|
330 |
#segments = segment_image_from_image(image)
|
331 |
#processed_image = overlay_masks_on_image(image, segments)
|
332 |
|
333 |
# debug image contents
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
#if os.path.isfile(image):
|
336 |
# ic ("--- image is a file ---")
|
337 |
# image = Image.open(image)
|
338 |
# if image is None:
|
339 |
# ic("image is None")
|
340 |
# return None, []
|
341 |
-
|
342 |
-
ic("--- calling
|
343 |
-
segments =
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
ic("--- printing segments ---")
|
350 |
-
for segment in segments:
|
351 |
-
ic(segment['label'] ,segment['score'])
|
352 |
processed_image = print_text_on_image_centered(
|
353 |
create_background_image(500, 500, "white"),
|
354 |
'SEGMENTING OK',
|
355 |
'green'
|
356 |
)
|
357 |
-
|
358 |
processed_image = overlay_masks_on_image(image, segments)
|
359 |
except Exception as e:
|
360 |
-
print("EXCEPTION")
|
361 |
ic(e)
|
362 |
-
print(traceback.format_exc())
|
363 |
processed_image = print_text_on_image_centered(
|
364 |
create_background_image(500, 500, "white"),
|
365 |
e,
|
366 |
'green'
|
367 |
)
|
368 |
segments = []
|
369 |
-
return processed_image, segments
|
370 |
finally:
|
371 |
return processed_image, segments
|
|
|
2 |
from pycocotools import mask
|
3 |
import matplotlib.pyplot as plt
|
4 |
from PIL import Image, ImageDraw, ImageOps, ImageFont
|
5 |
+
from dotenv import find_dotenv, load_dotenv
|
6 |
import os
|
7 |
import base64
|
8 |
import io
|
|
|
11 |
import cv2
|
12 |
from image_utils import print_text_on_image_centered, create_background_image
|
13 |
from icecream import ic
|
|
|
|
|
14 |
|
15 |
|
16 |
+
load_dotenv(find_dotenv())
|
17 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
18 |
|
19 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/mask2former-swin-tiny-coco-panoptic"
|
20 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def segment_image_from_path(image_path):
|
23 |
with open(image_path, "rb") as f:
|
|
|
39 |
mask_image = mask_image.resize(size).convert("L")
|
40 |
return mask_image
|
41 |
|
|
|
42 |
def overlay_masks_on_image(image, segments, transparency=0.4):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Convert numpy array to PIL Image
|
44 |
+
original_image = Image.fromarray(image).convert("RGBA")
|
45 |
+
|
46 |
#original_image = Image.open(image).convert("RGBA")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
overlay = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
48 |
+
|
49 |
# Nueva capa para el texto
|
50 |
|
51 |
text_layer = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
|
|
56 |
print(segment['label'] + " " + str(segment['score']))
|
57 |
mask_str = segment['mask']
|
58 |
mask_image = decode_mask(mask_str, original_image.size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
color = generate_random_color()
|
60 |
|
61 |
color_mask = ImageOps.colorize(mask_image, black="black", white=color)
|
|
|
63 |
|
64 |
overlay = Image.alpha_composite(overlay, color_mask)
|
65 |
|
|
|
66 |
# Calcula el centroide de la mascara
|
67 |
|
68 |
x, y = np.where(np.array(mask_image) > 0)
|
|
|
83 |
|
84 |
text_width = 500
|
85 |
text_height = 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
draw.text((centroid_x - text_width / 2, centroid_y - text_height / 2), text, fill=(255, 255, 255, 255), font=font)
|
87 |
+
|
|
|
88 |
|
89 |
# Ajusta la transparencia de la capa de superposición
|
90 |
+
|
|
|
91 |
overlay = Image.blend(original_image, overlay, transparency)
|
92 |
|
93 |
# Combina la capa de superposición con la capa de texto
|
|
|
102 |
return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
103 |
|
104 |
|
105 |
+
def segment_and_overlay_results(image, api_token, model):
|
106 |
#segments = segment_image_from_image(image)
|
107 |
#final_image = overlay_masks_on_image(image, segments)
|
108 |
#return final_image
|
109 |
processed_image = None # Initialize processed_image
|
110 |
segments = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
try:
|
112 |
#segments = segment_image_from_image(image)
|
113 |
#processed_image = overlay_masks_on_image(image, segments)
|
114 |
|
115 |
# debug image contents
|
116 |
+
|
117 |
+
ic(image)
|
118 |
+
|
119 |
+
if image.startswith('http://') or image.startswith('https://'):
|
120 |
+
ic("image is a URL: " + image)
|
121 |
+
response = requests.get(image)
|
122 |
+
image = Image.open(BytesIO(response.content))
|
123 |
+
else:
|
124 |
+
# Check if image is a local file
|
125 |
+
|
126 |
+
|
127 |
+
if os.path.isfile(os.path.join(os.getcwd(), image)):
|
128 |
+
ic("image is a file: " + image + "OK")
|
129 |
+
image = Image.open(image)
|
130 |
+
else:
|
131 |
+
raise ValueError("The image is neither a URL nor a local file.")
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
#if os.path.isfile(image):
|
136 |
# ic ("--- image is a file ---")
|
137 |
# image = Image.open(image)
|
138 |
# if image is None:
|
139 |
# ic("image is None")
|
140 |
# return None, []
|
141 |
+
print(image)
|
142 |
+
ic("--- calling segment_image_from_image ---")
|
143 |
+
#segments = segment_image_from_image(image)
|
144 |
+
segments = segment_image_from_path('cats.jpg')
|
145 |
+
for segment in segments:
|
146 |
+
print("segmentation_utils.py segment_and_overlay_results")
|
147 |
+
print(segment['label'] + " " + str(segment['score']))
|
|
|
|
|
|
|
|
|
148 |
processed_image = print_text_on_image_centered(
|
149 |
create_background_image(500, 500, "white"),
|
150 |
'SEGMENTING OK',
|
151 |
'green'
|
152 |
)
|
153 |
+
print("--- calling overlay_masks_on_image ---")
|
154 |
processed_image = overlay_masks_on_image(image, segments)
|
155 |
except Exception as e:
|
|
|
156 |
ic(e)
|
|
|
157 |
processed_image = print_text_on_image_centered(
|
158 |
create_background_image(500, 500, "white"),
|
159 |
e,
|
160 |
'green'
|
161 |
)
|
162 |
segments = []
|
|
|
163 |
finally:
|
164 |
return processed_image, segments
|