tts-gradio / app.py
Manu
added torch
1e645a6
raw
history blame
2.24 kB
import gradio as gr
from transformers import pipeline
from datasets import load_dataset
import soundfile as sf
import torch
import os
import io
import base64
import numpy as np
from pydub import AudioSegment
os.environ['TRANSFORMERS_CACHE'] = '.cache'
print ("----- setting up pipeline -----")
synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts")
print ("----- setting up dataset -----")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
# You can replace this embedding with your own as well.
print ("----- synthetizing audio -----")
#speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"speaker_embeddings": speaker_embedding})
#sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
def greet(name):
return "Hello " + name + "!!"
def synthesise_audio(text, forward_params=None):
if len(text) > 100:
raise ValueError("Error: El texto es demasiado largo. Por favor, limita tu entrada a 100 caracteres.")
speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
# sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
# return "speech.wav"
# Convert numpy array to audio
#with io.BytesIO() as f:
# sf.write(f, speech["audio"], samplerate=speech["sampling_rate"], format='wav')
# audio = f.getvalue()
# Convert numpy array to audio
audio = np.int16(speech["audio"] * 32767)
audio_segment = AudioSegment(audio, sample_width=2, frame_rate=speech["sampling_rate"], channels=1)
#return speech["audio"]
return audio
#demo = gr.Interface(fn=greet, inputs="text", outputs="text", description="----- TTS Testing -----")
input_text = gr.Textbox(lines=10, label="Enter text here")
demo = gr.Interface(fn=synthesise_audio,
inputs=input_text,
#outputs="audio",
outputs = gr.Audio(type="numpy"),
description="----- manuai Text To Speech generator -----",
allow_flagging = False)
demo.launch(debug = True)