Manu commited on
Commit
0e826bb
·
1 Parent(s): e8b9495

revert to wav file recording

Browse files
Files changed (1) hide show
  1. app.py +24 -7
app.py CHANGED
@@ -41,6 +41,11 @@ def synthesise_audio(text, forward_params=None):
41
  raise ValueError("Error: El texto es demasiado largo. Por favor, limita tu entrada a 100 caracteres.")
42
 
43
  speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
 
 
 
 
 
44
  # sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
45
  # return "speech.wav"
46
 
@@ -59,21 +64,33 @@ def synthesise_audio(text, forward_params=None):
59
  #return speech["audio"]
60
 
61
  #return audio
 
 
 
 
 
 
62
 
63
 
64
  # Create an in-memory buffer to store the audio data
65
- audio_buffer = io.BytesIO()
 
66
 
67
  # Write the audio data to the in-memory buffer
68
- sf.write(audio_buffer, speech["audio"], samplerate=speech["sampling_rate"], format="WAV")
 
69
 
70
  # Move the buffer cursor to the beginning of the buffer
71
- audio_buffer.seek(0)
72
 
73
  # Read the audio data from the in-memory buffer into a numpy array
74
- audio, sr = sf.read(audio_buffer)
 
 
 
 
75
 
76
- return audio, sr
77
 
78
 
79
 
@@ -85,8 +102,8 @@ input_text = gr.Textbox(lines=10, label="Enter text here")
85
 
86
  demo = gr.Interface(fn=synthesise_audio,
87
  inputs=input_text,
88
- #outputs="audio",
89
- outputs = gr.Audio(type="numpy"),
90
  description="----- manuai Text To Speech generator -----",
91
  allow_flagging = False)
92
 
 
41
  raise ValueError("Error: El texto es demasiado largo. Por favor, limita tu entrada a 100 caracteres.")
42
 
43
  speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
44
+
45
+
46
+ sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
47
+ return "speech.wav"
48
+
49
  # sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
50
  # return "speech.wav"
51
 
 
64
  #return speech["audio"]
65
 
66
  #return audio
67
+
68
+ # Ensure audio is a numpy array
69
+ #if isinstance(speech["audio"], int):
70
+ # audio = np.array([speech["audio"]])
71
+ #else:
72
+ # audio = speech["audio"]
73
 
74
 
75
  # Create an in-memory buffer to store the audio data
76
+ #print("Creating in-memory buffer")
77
+ #audio_buffer = io.BytesIO()
78
 
79
  # Write the audio data to the in-memory buffer
80
+ #print("Writing audio data to in-memory buffer")
81
+ #sf.write(audio_buffer, speech["audio"], samplerate=speech["sampling_rate"], format="WAV")
82
 
83
  # Move the buffer cursor to the beginning of the buffer
84
+ #audio_buffer.seek(0)
85
 
86
  # Read the audio data from the in-memory buffer into a numpy array
87
+ #print("Reading audio data from in-memory buffer")
88
+ #audio, sr = sf.read(audio_buffer)
89
+ #print("Audio data read from in-memory buffer, returning audio data and sample rate")
90
+ # Ensure audio is a numpy array before returning
91
+ #audio = np.array(audio)
92
 
93
+ #return audio, sr
94
 
95
 
96
 
 
102
 
103
  demo = gr.Interface(fn=synthesise_audio,
104
  inputs=input_text,
105
+ outputs="audio",
106
+ #outputs = gr.Audio(type="numpy"),
107
  description="----- manuai Text To Speech generator -----",
108
  allow_flagging = False)
109